Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives

Abstract

Over the past three decades, the number of people with diabetes mellitus has more than doubled globally, making it one of the most important public health challenges to all nations. Type 2 diabetes mellitus (T2DM) and prediabetes are increasingly observed among children, adolescents and younger adults. The causes of the epidemic of T2DM are embedded in a very complex group of genetic and epigenetic systems interacting within an equally complex societal framework that determines behavior and environmental influences. This complexity is reflected in the diverse topics discussed in this Review. In the past few years considerable emphasis has been placed on the effect of the intrauterine environment in the epidemic of T2DM, particularly in the early onset of T2DM and obesity. Prevention of T2DM is a 'whole-of-life' task and requires an integrated approach operating from the origin of the disease. Future research is necessary to better understand the potential role of remaining factors, such as genetic predisposition and maternal environment, to help shape prevention programs. The potential effect on global diabetes surveillance of using HbA1c rather than glucose values in the diagnosis of T2DM is also discussed.

Key Points

  • The prevalence of type 2 diabetes mellitus (T2DM) and prediabetes has been rapidly rising worldwide over the past three decades, particularly in developing countries

  • In addition to the early onset of T2DM in young adults, an increasing trend of T2DM and prediabetes is noticeable among children and adolescents

  • The epidemic of T2DM is attributable to a mixture of genetic and epigenetic predispositions and a variety of behavioral and environmental risk factors

  • An integrated approach, taking into account genetic and epigenetic determinants, is required for the effective prevention of T2DM beginning from the start of life

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global projections for the diabetes epidemic: 2010–2030.

Similar content being viewed by others

References

  1. Zimmet, P., Alberti, K. G. & Shaw, J. Global and societal implications of the diabetes epidemic. Nature 414, 782–787 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Danaei, G. et al. National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet 378, 31–40 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Shaw, J. E., Sicree, R. A. & Zimmet, P. Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87, 4–14 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Chan, J. C. et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 301, 2129–2140 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Dowse, G. K. et al. High prevalence of NIDDM and impaired glucose tolerance in Indian, Creole, and Chinese Mauritians. Mauritius Noncommunicable Disease Study Group. Diabetes 39, 390–396 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Simmons, D., Williams, D. R. & Powell, M. J. Prevalence of diabetes in a predominantly Asian community: preliminary findings of the Coventry diabetes study. BMJ 298, 18–21 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McNeely, M. J. & Boyko, E. J. Type 2 diabetes prevalence in Asian Americans: results of a national health survey. Diabetes Care 27, 66–69 (2004).

    Article  PubMed  Google Scholar 

  8. Yang, W. et al. Prevalence of diabetes among men and women in China. N. Engl. J. Med. 362, 1090–1101 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. Mbanya, J. C., Motala, A. A., Sobngwi, E., Assah, F. K. & Enoru, S. T. Diabetes in sub-Saharan Africa. Lancet 375, 2254–2266 (2010).

    Article  PubMed  Google Scholar 

  10. Abubakari, A. R. et al. Prevalence and time trends in diabetes and physical inactivity among adult West African populations: the epidemic has arrived. Public Health 123, 602–614 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Wändell, P. E. et al. Estimation of diabetes prevalence among immigrants from the Middle East in Sweden by using three different data sources. Diabetes Metab. 34, 328–333 (2008).

    Article  PubMed  Google Scholar 

  12. Ramachandran, A., Mary, S., Yamuna, A., Murugesan, N. & Snehalatha, C. High prevalence of diabetes and cardiovascular risk factors associated with urbanization in India. Diabetes Care 31, 893–898 (2008).

    Article  PubMed  Google Scholar 

  13. Ning, F. et al. Risk factors associated with the dramatic increase in the prevalence of diabetes in the adult Chinese population in Qingdao, China. Diabet. Med. 26, 855–863 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Pinhas-Hamiel, O. & Zeitler, P. The global spread of type 2 diabetes mellitus in children and adolescents. J. Pediatr. 146, 693–700 (2005).

    Article  PubMed  Google Scholar 

  15. Liese, A. D. et al. The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics 118, 1510–1518 (2006).

    Article  PubMed  Google Scholar 

  16. Kitagawa, T., Owada, M., Urakami, T. & Yamauchi, K. Increased incidence of non-insulin dependent diabetes mellitus among Japanese schoolchildren correlates with an increased intake of animal protein and fat. Clin. Pediatr. (Phila.) 37, 111–115 (1998).

    Article  CAS  Google Scholar 

  17. Dabelea, D. et al. Incidence of diabetes in youth in the United States. JAMA 297, 2716–2724 (2007).

    Article  PubMed  Google Scholar 

  18. Craig, M. E., Femia, G., Broyda, V., Lloyd, M. & Howard, N. J. Type 2 diabetes in Indigenous and non-Indigenous children and adolescents in New South Wales. Med. J. Aust. 186, 497–499 (2007).

    PubMed  Google Scholar 

  19. Dabelea, D. et al. Association testing of TCF7L2 polymorphisms with type 2 diabetes in multi-ethnic youth. Diabetologia 54, 535–539 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Williams, D. E. et al. Prevalence of impaired fasting glucose and its relationship with cardiovascular disease risk factors in US adolescents, 1999–2000. Pediatrics 116, 1122–1126 (2005).

    Article  PubMed  Google Scholar 

  21. Li, C., Ford, E. S., Zhao, G. & Mokdad, A. H. Prevalence of pre-diabetes and its association with clustering of cardiometabolic risk factors and hyperinsulinemia among U.S. adolescents: National Health and Nutrition Examination Survey 2005–2006. Diabetes Care 32, 342–347 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sinha, R. et al. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N. Engl. J. Med. 346, 802–810 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Goran, M. I. et al. Impaired glucose tolerance and reduced beta-cell function in overweight Latino children with a positive family history for type 2 diabetes. J. Clin. Endocrinol. Metab. 89, 207–212 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Rokholm, B., Baker, J. L. & Sorensen, T. I. The levelling off of the obesity epidemic since the year 1999—a review of evidence and perspectives. Obes. Rev. 11, 835–846 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Mokdad, A. H. et al. Diabetes trends in the U.S.: 1990–1998. Diabetes Care 23, 1278–1283 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Lawrence, J. M. et al. Diabetes in Hispanic American youth: prevalence, incidence, demographics, and clinical characteristics: the SEARCH for Diabetes in Youth Study. Diabetes Care 32 (Suppl. 2), S123–S132 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kelly, T., Yang, W., Chen, C. S., Reynolds, K. & He, J. Global burden of obesity in 2005 and projections to 2030. Int. J. Obes. (Lond.) 32, 1431–1437 (2008).

    Article  CAS  Google Scholar 

  28. Hu, F. B. et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N. Engl. J. Med. 345, 790–797 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Narayan, K. M., Boyle, J. P., Thompson, T. J., Gregg, E. W. & Williamson, D. F. Effect of BMI on lifetime risk for diabetes in the U. S. Diabetes Care 30, 1562–1566 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Schienkiewitz, A., Schulze, M. B., Hoffmann, K., Kroke, A. & Boeing, H. Body mass index history and risk of type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Am. J. Clin. Nutr. 84, 427–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Ruderman, N., Chisholm, D., Pi-Sunyer, X. & Schneider, S. The metabolically obese, normal-weight individual revisited. Diabetes 47, 699–713 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Meigs, J. B. et al. Body mass index, metabolic syndrome, and risk of type 2 diabetes or cardiovascular disease. J. Clin. Endocrinol. Metab. 91, 2906–2912 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Arnlöv, J., Sundström, J., Ingelsson, E. & Lind, L. Impact of BMI and the metabolic syndrome on the risk of diabetes in middle-aged men. Diabetes Care 34, 61–65 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Yoon, K.-H. et al. Epidemic obesity and type 2 diabetes in Asia. Lancet 368, 1681–1688 (2006).

    Article  PubMed  Google Scholar 

  35. Huxley, R. et al. Ethnic comparisons of the cross-sectional relationships between measures of body size with diabetes and hypertension. Obes. Rev. 9 (Suppl. 1), 53–61 (2008).

    Article  PubMed  Google Scholar 

  36. Deurenberg, P., Deurenberg-Yap, M. & Guricci, S. Asians are different from Caucasians and from each other in their body mass index/body fat per cent relationship. Obes. Rev. 3, 141–146 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Kadowaki, T. et al. Japanese men have larger areas of visceral adipose tissue than Caucasian men in the same levels of waist circumference in a population-based study. Int. J. Obes. (Lond.) 30, 1163–1165 (2006).

    Article  CAS  Google Scholar 

  38. Lear, S. A. et al. Visceral adipose tissue accumulation differs according to ethnic background: results of the Multicultural Community Health Assessment Trial (M-CHAT). Am. J. Clin. Nutr. 86, 353–359 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Lebovitz, H. E. & Banerji, M. A. Point: visceral adiposity is causally related to insulin resistance. Diabetes Care 28, 2322–2325 (2005).

    Article  PubMed  Google Scholar 

  40. Perseghin, G. Lipids in the wrong place: visceral fat and nonalcoholic steatohepatitis. Diabetes Care 34 (Suppl. 2), S367–S370 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hwang, J. H. et al. Increased intrahepatic triglyceride is associated with peripheral insulin resistance: in vivo MR imaging and spectroscopy studies. Am. J. Physiol. Endocrinol. Metab. 293, E1663–E1669 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Fraser, A. et al. Alanine aminotransferase, γ-glutamyltransferase, and incident diabetes: the British Women's Heart and Health Study and meta-analysis. Diabetes Care 32, 741–750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Taylor, R. Pathogenesis of type 2 diabetes: tracing the reverse route from cure to cause. Diabetologia 51, 1781–1789 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Bird, A. Perceptions of epigenetics. Nature 447, 396–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Gluckman, P. D., Hanson, M. A., Cooper, C. & Thornburg, K. L. Effect of in utero and early-life conditions on adult health and disease. N. Engl. J. Med. 359, 61–73 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pinney, S. E. & Simmons, R. A. Epigenetic mechanisms in the development of type 2 diabetes. Trends Endocrinol. Metab. 21, 223–229 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Whincup, P. H. et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA 300, 2886–2897 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Hales, C. N. & Barker, D. J. The thrifty phenotype hypothesis. Br. Med. Bull. 60, 5–20 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Ravelli, A. C. et al. Glucose tolerance in adults after prenatal exposure to famine. Lancet 351, 173–177 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Li, Y. et al. Exposure to the Chinese famine in early life and the risk of hyperglycemia and type 2 diabetes in adulthood. Diabetes 59, 2400–2406 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dabelea, D. et al. Birth weight, type 2 diabetes, and insulin resistance in Pima Indian children and young adults. Diabetes Care 22, 944–950 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Bavdekar, A. et al. Insulin resistance syndrome in 8-year-old Indian children: small at birth, big at 8 years, or both? Diabetes 48, 2422–2429 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Fowden, A. L. & Hill, D. J. Intra-uterine programming of the endocrine pancreas. Br. Med. Bull. 60, 123–142 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. Hyppönen, E., Power, C. & Smith, G. D. Prenatal growth, BMI, and risk of type 2 diabetes by early midlife. Diabetes Care 26, 2512–2517 (2003).

    Article  PubMed  Google Scholar 

  55. King, H. et al. Diabetes and associated disorders in Cambodia: two epidemiological surveys. Lancet 366, 1633–1639 (2005).

    Article  PubMed  Google Scholar 

  56. Wei, J. N. et al. Low birth weight and high birth weight infants are both at an increased risk to have type 2 diabetes among schoolchildren in Taiwan. Diabetes Care 26, 343–348 (2003).

    Article  PubMed  Google Scholar 

  57. Al Salmi, I. et al. Disorders of glucose regulation in adults and birth weight: results from the Australian Diabetes, Obesity and Lifestyle (AUSDIAB) Study. Diabetes Care 31, 159–164 (2008).

    Article  PubMed  Google Scholar 

  58. Bellamy, L., Casas, J. P., Hingorani, A. D. & Williams, D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 373, 1773–1779 (2009).

    Article  CAS  PubMed  Google Scholar 

  59. Pettitt, D. J. et al. Congenital susceptibility to NIDDM. Role of intrauterine environment. Diabetes 37, 622–628 (1988).

    Article  CAS  PubMed  Google Scholar 

  60. Dabelea, D. et al. Intrauterine exposure to diabetes conveys risks for type 2 diabetes and obesity: a study of discordant sibships. Diabetes 49, 2208–2211 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Stride, A. et al. Intrauterine hyperglycemia is associated with an earlier diagnosis of diabetes in HNF-1alpha gene mutation carriers. Diabetes Care 25, 2287–2291 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Sobngwi, E. et al. Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet 361, 1861–1865 (2003).

    Article  PubMed  Google Scholar 

  63. Crume, T. L. et al. Association of exposure to diabetes in utero with adiposity and fat distribution in a multiethnic population of youth: the Exploring Perinatal Outcomes among Children (EPOCH) Study. Diabetologia 54, 87–92 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Pettitt, D. J. et al. Association between maternal diabetes in utero and age at offspring's diagnosis of type 2 diabetes. Diabetes Care 31, 2126–2130 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Franks, P. W. et al. Gestational glucose tolerance and risk of type 2 diabetes in young Pima Indian offspring. Diabetes 55, 460–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Lawrence, J. M., Contreras, R., Chen, W. & Sacks, D. A. Trends in the prevalence of preexisting diabetes and gestational diabetes mellitus among a racially/ethnically diverse population of pregnant women, 1999–2005. Diabetes Care 31, 899–904 (2008).

    Article  PubMed  Google Scholar 

  67. Dabelea, D. et al. Increasing prevalence of gestational diabetes mellitus (GDM) over time and by birth cohort: Kaiser Permanente of Colorado GDM Screening Program. Diabetes Care 28, 579–584 (2005).

    Article  PubMed  Google Scholar 

  68. Getahun, D., Nath, C., Ananth, C. V., Chavez, M. R. & Smulian, J. C. Gestational diabetes in the United States: temporal trends 1989 through 2004. Am. J. Obstet. Gynecol. 198, 525.e1–525.e5 (2008).

    Article  Google Scholar 

  69. Cauchi, S. et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global meta-analysis. J. Mol. Med. 85, 777–782 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. McCarthy, M. I. Genomics, type 2 diabetes, and obesity. N. Engl. J. Med. 363, 2339–2350 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Balkau, B. et al. Predicting diabetes: clinical, biological, and genetic approaches: data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes Care 31, 2056–2061 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schulze, M. B. et al. Use of multiple metabolic and genetic markers to improve the prediction of type 2 diabetes: the EPIC-Potsdam Study. Diabetes Care 32, 2116–2119 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lango, H. et al. Assessing the combined impact of 18 common genetic variants of modest effect sizes on type 2 diabetes risk. Diabetes 57, 3129–3135 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lyssenko, V. et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N. Engl. J. Med. 359, 2220–2232 (2008).

    Article  CAS  PubMed  Google Scholar 

  75. Meigs, J. B. et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N. Engl. J. Med. 359, 2208–2219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. van Hoek, M. et al. Predicting type 2 diabetes based on polymorphisms from genome-wide association studies: a population-based study. Diabetes 57, 3122–3128 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Talmud, P. J. et al. Utility of genetic and non-genetic risk factors in prediction of type 2 diabetes: Whitehall II prospective cohort study. BMJ 340, b4838 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  78. de Miguel-Yanes, J. M. et al. Genetic risk reclassification for type 2 diabetes by age below or above 50 years using 40 type 2 diabetes risk single nucleotide polymorphisms. Diabetes Care 34, 121–125 (2011).

    Article  PubMed  Google Scholar 

  79. Qi, L., Cornelis, M. C., Zhang, C., van Dam, R. M. & Hu, F. B. Genetic predisposition, Western dietary pattern, and the risk of type 2 diabetes in men. Am. J. Clin. Nutr. 89, 1453–1458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Laaksonen, D. E. et al. Physical activity, diet, and incident diabetes in relation to an ADRA2B polymorphism. Med. Sci. Sports. Exerc. 39, 227–232 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Florez, J. C. et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N. Engl. J. Med. 355, 241–250 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang, J. et al. Variants of transcription factor 7-like 2 (TCF7L2) gene predict conversion to type 2 diabetes in the Finnish Diabetes Prevention Study and are associated with impaired glucose regulation and impaired insulin secretion. Diabetologia 50, 1192–1200 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Grant, R. W. et al. The clinical application of genetic testing in type 2 diabetes: a patient and physician survey. Diabetologia 52, 2299–2305 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Markowitz, S. M., Park, E. R., Delahanty, L. M., O'Brien, K. E. & Grant, R. W. Perceived impact of diabetes genetic risk testing among patients at high phenotypic risk for type 2 diabetes. Diabetes Care 34, 568–573 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Shaw, J. E., Punjabi, N. M., Wilding, J. P., Alberti, K. G. & Zimmet, P. Z. Sleep-disordered breathing and type 2 diabetes: a report from the International Diabetes Federation Taskforce on Epidemiology and Prevention. Diabetes Res. Clin. Pract. 81, 2–12 (2008).

    Article  PubMed  Google Scholar 

  86. Mezuk, B., Eaton, W. W., Albrecht, S. & Golden, S. H. Depression and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care 31, 2383–2390 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kivimäki, M. et al. Antidepressant medication use, weight gain, and risk of type 2 diabetes: a population-based study. Diabetes Care 33, 2611–2616 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Alonso-Magdalena, P., Quesada, I. & Nadal, A. Endocrine disruptors in the etiology of type 2 diabetes mellitus. Nat. Rev. Endocrinol. 7, 346–353 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Brook, R. D. et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation 121, 2331–2378 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Krämer, U. et al. Traffic-related air pollution and incident type 2 diabetes: results from the SALIA cohort study. Environ. Health Perspect. 118, 1273–1279 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Nathan, D. M., Turgeon, H. & Regan, S. Relationship between glycated haemoglobin levels and mean glucose levels over time. Diabetologia 50, 2239–2244 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. American Diabetes Association. Standards of medical care in diabetes–2010. Diabetes Care 33 (Suppl. 1), S11–S61 (2010).

  93. World Health Organization. Use of glycated haemoglobin (HbA1c) in the diagnosis of diabetes mellitus: abbreviated report of a WHO consultation [online], (2011).

  94. Zhang, X. et al. A1C level and future risk of diabetes: a systematic review. Diabetes Care 33, 1665–1673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Selvin, E. et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N. Engl. J. Med. 362, 800–811 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Santos-Oliveira, R. et al. Haemoglobin A(1c) levels and subsequent cardiovascular disease in persons without diabetes: a meta-analysis of prospective cohorts. Diabetologia 54, 1327–1334 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. The International Expert Committe. International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care 32, 1327–1334 (2009).

  98. Colagiuri, S. et al. Glycemic thresholds for diabetes-specific retinopathy: implications for diagnostic criteria for diabetes. Diabetes Care 34, 145–150 (2011).

    Article  PubMed  Google Scholar 

  99. Zhou, X. et al. Performance of an A1C and fasting capillary blood glucose test for screening newly diagnosed diabetes and pre-diabetes defined by an oral glucose tolerance test in Qingdao, China. Diabetes Care 33, 545–550 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Christensen, D. L. et al. Moving to an A1C-based diagnosis of diabetes has a different impact on prevalence in different ethnic groups. Diabetes Care 33, 580–582 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Cowie, C. C. et al. Prevalence of diabetes and high risk for diabetes using A1C criteria in the U.S. population in 1988–2006. Diabetes Care 33, 562–568 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  102. van 't Riet, E. et al. Relationship between A1C and glucose levels in the general Dutch population: the new Hoorn study. Diabetes Care 33, 61–66 (2010).

    Article  CAS  PubMed  Google Scholar 

  103. Araneta, M. R., Grandinetti, A. & Chang, H. K. A1C and diabetes diagnosis among Filipino Americans, Japanese Americans, and Native Hawaiians. Diabetes Care 33, 2626–2628 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Olson, D. E. et al. Screening for diabetes and pre-diabetes with proposed A1C-based diagnostic criteria. Diabetes Care 33, 2184–2189 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Boronat, M. et al. Differences in cardiovascular risk profile of diabetic subjects discordantly classified by diagnostic criteria based on glycated hemoglobin and oral glucose tolerance test. Diabetes Care 33, 2671–2673 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mostafa, S. A. et al. The potential impact of using glycated haemoglobin as the preferred diagnostic tool for detecting type 2 diabetes mellitus. Diabet. Med. 27, 762–769 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Bao, Y. et al. Glycated haemoglobin A1c for diagnosing diabetes in Chinese population: cross sectional epidemiological survey. BMJ 340, c2249 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Selvin, E., Zhu, H. & Brancati, F. L. Elevated A1C in adults without a history of diabetes in the U.S. Diabetes Care 32, 828–833 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Mohan, V. et al. A1C cut points to define various glucose intolerance groups in Asian Indians. Diabetes Care 33, 515–519 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Bennett, C. M., Guo, M. & Dharmage, S. C. HbA1c as a screening tool for detection of type 2 diabetes: a systematic review. Diabet. Med. 24, 333–343 (2007).

    Article  CAS  PubMed  Google Scholar 

  111. Lauritzen, T., Sandbaek, A., Skriver, M. V. & Borch-Johnsen, K. HbA1c and cardiovascular risk score identify people who may benefit from preventive interventions: a 7 year follow-up of a high-risk screening programme for diabetes in primary care (ADDITION), Denmark. Diabetologia 54, 1318–1326 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Mann, D. M. et al. Impact of A1C screening criterion on the diagnosis of pre-diabetes among U.S. adults. Diabetes Care 33, 2190–2195 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gerstein, H. C. et al. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res. Clin. Pract. 78, 305–312 (2007).

    Article  PubMed  Google Scholar 

  114. International Diabetes Federation. IDF Diabetes Atlas (4th Edn). Diabetes estimates Excel tables [online]. (2009).

  115. Mozaffarian, D. et al. Lifestyle risk factors and new-onset diabetes mellitus in older adults: the cardiovascular health study. Arch. Intern. Med. 169, 798–807 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Gillies, C. L. et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ 334, 299 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Lindström, J. et al. Determinants for the effectiveness of lifestyle intervention in the Finnish Diabetes Prevention Study. Diabetes Care 31, 857–862 (2008).

    Article  CAS  PubMed  Google Scholar 

  118. Buijsse, B., Simmons, R. K., Griffin, S. J. & Schulze, M. B. Risk assessment tools for identifying individuals at risk of developing type 2 diabetes. Epidemiol. Rev. 33, 46–62 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chen, L. et al. Maximizing efficiency and cost-effectiveness of type 2 diabetes screening: the AusDiab study. Diabet. Med. 28, 414–423 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Saaristo, T. et al. Lifestyle intervention for prevention of type 2 diabetes in primary health care: one-year follow-up of the Finnish National Diabetes Prevention Program (FIN-D2D). Diabetes Care 33, 2146–2151 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Makrilakis, K., Liatis, S., Grammatikou, S., Perrea, D. & Katsilambros, N. Implementation and effectiveness of the first community lifestyle intervention programme to prevent type 2 diabetes in Greece. The DE-PLAN study. Diabet. Med. 27, 459–465 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Rose, G. Sick individuals and sick populations. Int. J. Epidemiol. 14, 32–38 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspect of article preparation.

Corresponding author

Correspondence to Paul Z. Zimmet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Magliano, D. & Zimmet, P. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 8, 228–236 (2012). https://doi.org/10.1038/nrendo.2011.183

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2011.183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing