Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic strategies for human amyloid diseases

Key Points

  • A relatively large and diverse set of human proteins are known to form fibrils that accumulate in tissue in association with several different diseases. It is widely accepted that these fibrils — called amyloid — are the causative agent of the related diseases. Another common attribute of amyloid diseases is that beyond the age of forty, the risk of developing an amyloid disease greatly increases. This is true for all known amyloid diseases with the exception of the familial type.

  • On a molecular level, amyloid fibrils resemble an aircraft cable, with 3–6 filaments wrapped around one another to form the fibril. All amyloid fibrils studied to date are composed of individual filaments that are made of a lamellar cross-?-sheet, which contains thousands of non-covalently associated protein subunits.

  • The most common strategy that is being pursued in the development of small-molecule amyloid inhibitors involves finding molecules that prevent the initiation of the conformational changes or endoproteolytic processing that lead to amyloid formation. A more difficult approach might be to discover compounds that prevent amyloid formation by intercepting the misfolded protein.

  • Intermediates in amyloid assembly might be responsible for some, if not all, of the pathology. Therefore, 'amyloid-fibril inhibitors' could, in theory, lead to more pronounced pathology owing to the accumulation of soluble disease-associated quaternary structures.

  • Small-molecule inhibitors that stabilize the native conformation of transthyretin (TTR) have been discovered using functional screens and structure-based methods. Several of these small-molecule inhibitors efficiently prevent TTR amyloid fibril formation in vitro, and are being tested for their in vivo activity.

Abstract

Amyloid diseases are a large group of a much larger family of misfolding diseases. This group includes pathologies as diverse as Alzheimer's disease, immunoglobulin-light-chain disease, reactive amyloid disease and the familial amyloid polyneuropathies. These diseases are generally incurable at present, although some drugs are known to transiently slow the progression of Alzheimer's disease. As we increase our understanding of the causative mechanisms of these disorders, the likelihood of success for a given therapeutic strategy will become clearer. This review will look at small-molecule and macromolecular approaches for intervention in amyloid diseases other than Alzheimer's disease, although select examples from Alzheimer's disease will be discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of amyloid fibrils.
Figure 2: Free-energy-reaction coordinate diagram.
Figure 3: Small-molecule TTR amyloid-fibril inhibitors.
Figure 4: Interallelic trans-suppression of misfolding.

Similar content being viewed by others

References

  1. Kisilevsky, R. Biology of disease amyloidosis: a familiar problem in light of current pathogenic developments. Lab. Inv. 49, 381–390 (1983).

    CAS  Google Scholar 

  2. Pepys, M. B. in Immunological Diseases (ed. Samter, M.) 631–674 (Little, Brown and Co., Boston/Toronto, 1988).

    Google Scholar 

  3. Stevens, F. J. & Kisilevsky, R. Immunoglobulin light chains, glycosaminoglycans, and amyloid. Cell. Mol. Life Sci. 57, 441–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Sipe, J. D. Amyloidosis. Annu. Rev. Biochem. 61, 947–975 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Jacobson, D. R. & Buxbaum, J. N. Genetic aspects of amyloidosis. Adv. Human Genetics 20, 69–123 (1991).

    Article  CAS  Google Scholar 

  6. Sipe, J. D. Amyloidosis. Crit. Rev. Clin. Lab. Sci. 31, 325–354 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. Benson, M. D. & Wallace, M. R. in The Metabolic Basis of Inherited Disease (eds. Scriver, C. R., Beaudet, A. L., Sly, W. S. & Valle, D.) 2439 (McGraw Hill, New York, 1989).

    Google Scholar 

  8. Benson, M. D. Familial amyloidotic polyneuropathy. Trends Biochem. Sci. 12, 88–92 (1989).

    CAS  Google Scholar 

  9. Kelly, J. W. Alternative conformations of amyloidogenic proteins govern their behavior. Curr. Opin. Struct. Biol. 6, 11–17 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Fink, A. L. Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold. Des. 3, R9–R23 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Sipe, J. D. Serum amyloid A. From fibril to function. Current status. Amyloid 7, 10–12 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Pepys, M. B. & Hawkins, P. N. Human lysozyme gene mutation causes hereditary systemic amyloidosis. Nature 362, 553–557 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Golde, T. E., Estus, S., Younkin, L. H., Selkoe, D. J. & Younkin, S. G. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 255, 728–730 (1992).

    Article  CAS  PubMed  Google Scholar 

  14. Shoji, M. et al. Production of the Alzheimer amyloid β-protein by normal proteolytic processing. Science 258, 126–129 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Vassar, R. et al. β-Secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286, 735–741 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Kimberly, W. T., Xia, W., Rahmati, T., Wolfe, M. S. & Selkoe, D. J. The transmembrane aspartates in presenilin 1 and 2 are obligatory for γ-secretase activity and amyloid β-protein generation. J. Biol. Chem. 275, 3173–3178 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, C. D. et al. Furin initiates gelsolin familial amyloidosis in the Golgi through a defect in Ca2+ stabilization. EMBO J. 20, 6277–6287 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kelly, J. W. & Lansbury, P. T. J. A chemical approach to elucidate the mechanism of transthyretin and β-protein amyloid fibril formation. Amyloid: Int. J. Exp. Clin. Invest. 1, 186–205 (1994).

    Article  CAS  Google Scholar 

  19. Moyer, B. D. & Balch, W. E. A new frontier in pharmacology: the endoplasmic reticulum as a regulated export pathway in health and disease. Emerging Therap. Targets 5, 165–176 (2001).

    Article  CAS  Google Scholar 

  20. Kelly, J. W. Amyloid fibril formation and protein misassembly: a structural quest for insights into amyloid and prion diseases. Structure 5, 595–600 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Kelly, J. W. The environmental dependency of protein folding best explains prion and amyloid diseases. Proc. Natl Acad. Sci. USA 95, 930–932 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Westermark, P., Sletten, K., Johansson, B. & Cornwell, G. G. Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proc. Natl Acad. Sci. USA 87, 2843–2845 (1990).

    Article  CAS  PubMed  Google Scholar 

  23. Saravia, M. J. M., Birken, S., Costa, P. & Goodman, D. S. Amyloid fibril protein in familial polyneuropathy, Portugese type: definition of molecular abnormality in transthyretin (prealbumin). J. Clin. Inv. 74, 104–119 (1984).

    Article  Google Scholar 

  24. Selkoe, D. J. Alzheimer's disease: genotypes, phenotype and treatments. Science 275, 630–631 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Kiuru, S. Gelsolin-related familial amyloidosis, Finnish type (FAF), and its variants found worldwide. Amyloid 5, 55–66 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Hurle, M. R., Helms, L. R., Li, L., Chan, W. & Wetzel, R. A role for destabilizing amino acid replacements in light chain amyloidosis. Proc. Natl Acad. Sci. USA 91, 5446–5450 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Khurana, R. et al. Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates. Biochemistry 40, 3525–3535 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Wanker, E. E. Protein aggregation in Huntington's and Parkinson's disease: implications for therapy. Mol. Med. Today 6, 387–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Wanker, E. E. Protein aggregation and pathogenesis of Huntington's disease: mechanisms and correlations. Biol. Chem. 381, 937–942 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Scherzinger, E. et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington's disease pathology. Proc. Natl Acad. Sci. USA 96, 4604–4609 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Conway, K. A., Harper, J. D. & Lansbury, P.T. Jr. Fibrils formed in vitro from α-synuclein and two mutant forms linked to Parkinson's disease are typical amyloid. Biochemistry 39, 2552–2563 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Goldberg, M. S. & Lansbury, P. T. Jr. Is there a cause-and-effect relationship between α-synuclein fibrillization and Parkinson's disease? Nature Cell Biol. 2, E115–E119 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Bruijn, L. I. et al. Aggregation and motor neuron toxicity of an ALS-linked SOD1 mutant independent from wild-type SOD1. Science 281, 1851–1854 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Caughey, B. Transmissible spongiform encephalopathies, amyloidoses and yeast prions: common threads? Nature Med. 6, 751–754 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Prusiner, S. B. & DeArmond, S. J. Prion protein amyloid and neurodegeneration. Amyloid 2, 39–65 (1995).

    Article  CAS  Google Scholar 

  36. Hammarstrom, P., Schneider, F. & Kelly, J. W. Trans-suppression of misfolding in an amyloid disease. Science 293, 2459–2461 (2001).This manuscript shows the molecular basis of interallelic trans-suppression of misfolding. Incorporation of T119M subunits into a tetramer also composed of disease-associated subunits stabilizes the tetramer and slows rate-limiting dissociation.

    Article  CAS  PubMed  Google Scholar 

  37. Selkoe, D. J. Amyloid β-protein and the genetics of Alzheimer's disease. J. Biol. Chem. 271, 18295–18298 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Schehr, R. S. Amyloid hypothesis of Alzheimer's rides high – for now. Nature Biotechnol. 15, 19–20 (1997).

    Article  CAS  Google Scholar 

  39. White, J. T. & Kelly, J. W. Support for the multigenic hypothesis of amyloidosis: the binding stoichiometry of retinol-binding protein, vitamin A, and thyroid hormone influences transthyretin amyloidogenicity in vitro. Proc. Natl Acad. Sci. USA 98, 13019–13024 (2001).This publication shows that ligands that bind to amyloidogenic proteins can have a dramatic influence on amyloidogenicity. More than seventy gene products control the two ligands that bind to TTR.

    Article  CAS  PubMed  Google Scholar 

  40. Meyer, M. R. et al. APOE genotype predicts when – not whether – one is predisposed to develop Alzheimer disease. Nature Genet. 19, 321–322 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Roses, A. D. & Saunders, A. M. APOE is a major susceptibility gene for Alzheimer's disease. Curr. Opin. Biotechnol. 5, 663–667 (1994).

    Article  CAS  PubMed  Google Scholar 

  42. Hammarstrom, P., Jiang, X., Deechongkit, S. & Kelly, J. W. Anion shielding of electrostatic repulsions in transthyretin modulates stability and amyloidosis: insight into the chaotrope unfolding dichotomy. Biochemistry 40, 11453–11459 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Jimenez, J. L. et al. Cryo-electron microscopy structure of an SH3 amyloid fibril and model of the molecular packing. EMBO J. 18, 815–821 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Blake, C. & Serpell, L. Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous β-sheet helix. Structure 4, 989–998 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Serpell, L. C. et al. Examination of the structure of the transthyretin amyloid fibril by image reconstruction from electron micrographs. J. Mol. Biol. 254, 113–118 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Serpell, L. C. et al. The protofilament substructure of amyloid fibrils. J. Mol. Biol. 300, 1033–1039 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Sunde, M. et al. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Lovat, L. B., Hohenester, E., Westermark, P., Wood, S. P. & Pepys, M. B. in Amyloid Amyloidosis 1998, Proc. 8th Int. Symp. Amyloidosis (eds Kyle, R. A. & Gertz, M. A.) 29–31 (Parthenon Publishing, New York, 1999).

    Google Scholar 

  49. Rydh, A. et al. Serum amyloid P component scintigraphy in familial amyloid polyneuropathy: regression of visceral amyloid following liver transplantation. Eur. J. Nucl. Med. 25, 709–713 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Klein, W. L., Krafft, G. A. & Finch, C. E. Targeting small Aβ oligomers: the solution to an Alzheimer's disease conundrum? Trends Neurosci. 24, 219–224 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Volles, M. J. et al. Vesicle permeabilization by protofibrillar α-synuclein: implications for the pathogenesis and treatment of Parkinson's disease. Biochemistry 40, 7812–7819 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Colon, W. & Kelly, J. W. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31, 8654–8660 (1992).

    Article  CAS  PubMed  Google Scholar 

  53. Lai, Z., Colon, W. & Kelly, J. W. The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate which can self-assemble into amyloid. Biochemistry 35, 6470–6482 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. McCutchen, S. L., Lai, Z., Miroy, G., Kelly, J. W. & Colon, W. Comparison of lethal and non-lethal transthyretin variants and their relationship to amyloid disease. Biochemistry 34, 13527–13536 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Jiang, X. et al. An engineered transthyretin monomer that is nonamyloidogenic, unless it is partially denatured. Biochemistry 40, 11442–11452 (2001).

    Article  CAS  PubMed  Google Scholar 

  56. Lashuel, H. A., Lai, Z. & Kelly, J. W. Characterization of the transthyretin acid denaturation pathways by analytical ultracentrifugation: implications for wild-type, V30M, and L55P amyloid fibril formation. Biochemistry 37, 17851–17864 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Liu, K., Cho, H. S., Lashuel, H. A., Kelly, J. W. & Wemmer, D. E. A glimpse of a possible amyloidogenic intermediate of transthyretin. Nature Struct. Biol. 7, 754–757 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Booth, D. R. et al. Instability, unfolding and aggregation of human lysosozyme variants underlying amyloid fibrillogenesis. Nature 385, 787–793 (1997).

    Article  CAS  PubMed  Google Scholar 

  59. Wetzel, R. Mutations and off-pathway aggregation of proteins. Trends Biotechnol. 12, 193–198 (1994).

    Article  CAS  PubMed  Google Scholar 

  60. Dobson, C. M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332 (1999).

    Article  CAS  Google Scholar 

  61. Miroy, G. J. et al. Inhibiting transthyretin amyloid fibril formation via protein stabilization. Proc. Natl Acad. Sci. USA 93, 15051–15056 (1996).

    Article  CAS  PubMed  Google Scholar 

  62. Peterson, S. A. et al. Inhibiting transthyretin conformational changes that lead to amyloid fibril formation. Proc. Natl Acad. Sci. USA 95, 12956–12960 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Klabunde, T. et al. Rational design of potent human transthyretin amyloid disease inhibitors. Nature Struct. Biol. 7, 312–321 (2000).Structure-based ligand design was used to create novel inhibitors, which were than characterized by X-ray crystallography.

    Article  CAS  PubMed  Google Scholar 

  64. Petrassi, H. M., Klabunde, T., Sacchettini, J. & Kelly, J. W. Structure-based design of N-phenyl phenoxazine transthyretin amyloid fibril inhibitors. J. Am. Chem. Soc. 122, 2178–2192 (2000).Structure-based ligand design was used to conceive of N-phenylphenoxazines as inhibitors of TTR amyloid-fibril formation.

    Article  CAS  Google Scholar 

  65. Oza, V. B., Petrassi, H. M., Purkey, H. E. & Kelly, J. W. Synthesis and evaluation of anthranilic acid-based transthyretin amyloid fibril inhibitors. Bioorg. Med. Chem. Lett. 9, 1–6 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Baures, P. W., Peterson, S. A. & Kelly, J. W. Discovering transthyretin amyloid fibril inhibitors by limited screening. Bioorg. Med. Chem. 6, 1389–1401 (1998).A simple turbidity assay is described to identify TTR amyloid-fibril inhibitors by screening.

    Article  CAS  PubMed  Google Scholar 

  67. Baures, P. W., Oza, V. B., Peterson, S. A. & Kelly, J. W. Synthesis and evaluation of inhibitors of transthyretin amyloid formation based on the nonsteroidal anti-inflammatory drug flufenamic acid. Bioorg. Med. Chem. 7, 1339–1347 (1999).

    Article  CAS  PubMed  Google Scholar 

  68. Kelly, J. W. et al. Transthyretin quaternary and tertiary structural changes facilitate misassembly into amyloid. Adv. Protein Chem. 50, 161–181 (1997).

    Article  CAS  PubMed  Google Scholar 

  69. Krebs, M. R. H. et al. Formation and seeding of amyloid fibrils from wild-type hen lysozyme and a peptide fragment from the β-domain. J. Mol. Biol. 300, 541–549 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Chiti, F. et al. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc. Natl Acad. Sci. USA 96, 3590–3594 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Kirkitadze, M. D., Condron, M. M. & Teplow, D. B. Identification and characterization of key kinetic intermediates in amyloid-β-protein fibrillogenesis. J. Mol. Biol. 312, 1103–1119 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Allsop, D. et al. Modulation of β-amyloid production and fibrillization. Biochem. Soc. Symp. 67, 1–14 (2001).

    Article  CAS  Google Scholar 

  73. Howlett, D. R. Aβ Oligomerization: a therapeutic target for Alzheimer's disease. Curr. Med. Chem. Immunol. Endocr. Metab. Agents 1, 25–38 (2001).

    Article  CAS  Google Scholar 

  74. Bohrmann, B. et al. Self-assembly of β-amyloid 42 is retarded by small molecular ligands at the stage of structural intermediates. J. Struct. Biol. 130, 232–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Findeis, M. A. & Molineaux, S. M. Design and testing of inhibitors of fibril formation. Methods Enzymol. 309, 476–488 (1999).Evaluation methods are described to understand the mechanistic basis by which small molecules prevent the maturation of protein aggregates into amyloid fibrils.

    Article  CAS  PubMed  Google Scholar 

  76. LeVine, H. & Scholten, J. D. Screening for pharmacologic inhibitors of amyloid fibril formation. Methods Enzymol. 309, 467–476 (1999).

    Article  CAS  PubMed  Google Scholar 

  77. Moore, C. L. & Wolfe, M. S. Inhibition of β-amyloid formation as a therapeutic strategy. Expert Opin. Ther. Pat. 9, 135–146 (1999).

    Article  CAS  Google Scholar 

  78. Bandiera, T., Lansen, J., Post, C. & Varasi, M. Inhibitors of Aβ peptide aggregation as potential anti-Alzheimer agents. Curr. Med. Chem. 4, 159–170 (1997).

    CAS  Google Scholar 

  79. Glenner, G. G. et al. Creation of amyloid fibrils from Bence Jones proteins in vitro. Science 174, 712–714 (1971).

    Article  CAS  PubMed  Google Scholar 

  80. Shirahama, T. & Cohen, A. S. Intralysosomal formation of amyloid fibrils. Am. J. Pathol. 81, 101–116 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Shirahama, T. et al. Amyloid enhancing factor-loaded macrophages in amyloid fibril formation. Lab. Inv. 62, 61–68 (1990).

    CAS  Google Scholar 

  82. Yamazaki, T., Koo, E. H. & Selkoe, D. J. Trafficking of cell-surface amyloid β-protein precursor II. Endocytosis, recycling, and lysosomal targeting detected by immunolocalization. J. Cell Sci. 109, 999–1008 (1996).

    CAS  PubMed  Google Scholar 

  83. Yang, A. J., Chandswangbhuvana, D., Shu, T., Henschen, A. & Glabe, C. G. Intracellular accumulation of insoluble, newly synthesized Aβ n–42 in amyloid precursor protein-transfected cells that have been treated with Aβ 1–42. J. Biol. Chem. 274, 20650–20656 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Jiang, X., Buxbaum, J. N. & Kelly, J. W. The V122I cardiac variant of transthyretin increases the velocity of rate-limiting tetramer dissociation resulting in accelerated amyloidosis. Proc. Natl Acad. Sci. USA 98, 14943–14948 (2001).

    Article  CAS  PubMed  Google Scholar 

  85. Liu, K. et al. Deuterium–proton exchange on the native wild-type transthyretin tetramer identifies the stable core of the individual subunits and indicates mobility at the subunit interface. J. Mol. Biol. 303, 555–565 (2000).

    Article  CAS  PubMed  Google Scholar 

  86. Purkey, H. E., Dorrell, M. I. & Kelly, J. W. Evaluating the binding selectivity of transthyretin amyloid fibril inhibitors in blood plasma. Proc. Natl Acad. Sci. USA 98, 5566–5571 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Oza, V. B. et al. Synthesis, structure and activity of diclofenac analogs as transthyretin amyloid fibril inhibitors. J. Med. Chem. 45, 321–332 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Suhr, O. B. Transplantation for amyloidosis. Rinsho Byori 48, 329–335 (2000).

    CAS  PubMed  Google Scholar 

  89. Anderson, O. & Wallin, G. in Second International Symposium On Familial Amyloidotic Polyneuropathy and Other Transthyretin Related Disorders 49 (Skelleftea, Sweden, 1992).

    Google Scholar 

  90. Wei, Y. et al. Disruption of protein–protein interactions: design of a synthetic receptor that blocks the binding of cytochrome c to cytochrome cperoxidase. J. Chem. Soc. Chem. Commun. 1580–1581 (2001).

  91. Schenk, D. et al. Immunization with amyloid-β attenuates Alzheimer disease-like pathology in the PDAPP mouse. Nature 400, 173–177 (1999).Describes the immunization approach to the amelioration of Alzheimer's-associated amyloid disease.

    Article  CAS  PubMed  Google Scholar 

  92. Lee, V. M. Y. Aβ immunization: moving Aβ peptide from brain to blood. Proc. Natl Acad. Sci. USA 98, 8931–8932 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Coelho, T. et al. A strikingly benign evolution of FAP in an individual found to be a compound heterozygote for two TTR mutations: TTR Met30 and TTR Met119. J. Rheumatol. 20, 179–179 (1993).

    Google Scholar 

  94. Coelho, T. et al. Compound heterozygotes of transthyretin Met30 and transthyretin Met119 are protected from the devastating effects of familial amyloid polyneuropathy. Neuromusc. Disord. 6, 27 [AU: 1 pge OK?] (1996).

  95. Koepf, E. K. et al. Characterization of the structure and function of W to F WW domain variants: identification of a natively unnfolded protein that folds upon ligand binding. Biochemistry 38, 14338–14351 (1999).

    Article  CAS  PubMed  Google Scholar 

  96. Weggen, S. et al. A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414, 212–216 (2001).

    Article  CAS  PubMed  Google Scholar 

  97. Kim, S.-H. et al. Furin mediates enhanced production of fibrillogenic ABri peptides in familial British dementia. Nature Neurosci. 2, 984–988 (1999).

    Article  CAS  PubMed  Google Scholar 

  98. Fan, J.-Q. Potential drug therapies for lysosomal storage disorders. Front. Biotechnol. Pharmacol. 2, 275–291 (2001).

    CAS  Google Scholar 

  99. Fan, J.-Q., Ishii, S., Asano, N. & Suzuki, Y. Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nature Med. 5, 112–115 (1999).Misfolding and mistransport can be corrected by small molecules that bind to, and mediate proper folding of, proteins. This approach was used to correct Fabry's disease – a lysosomal storage disorder.

    Article  CAS  PubMed  Google Scholar 

  100. Perrier, V. et al. Mimicking dominant negative inhibition of prion replication through structure-based drug design. Proc. Natl Acad. Sci. USA 97, 6073–6078 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. Kisislevsky, R. et al. Arresting amyloidosis in vivo using small molecule anionic sulfates or sulfonates: implications for Alzheimer's disease. Nature Med. 1, 143–148 (1995).

    Article  Google Scholar 

  102. Ancsin, J. B. & Kisilevsky, R. The heparin/heparan sulfate-binding site on APO-serum amyloid A. Implications for the therapeutic intervention of amyloidosis. J. Biol. Chem. 274, 7172–7181 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Ancsin, J. B. & Kisilevsky, R. in Amyloid Amyloidosis 1998, Proc. 8th Int. Symp. Amyloidosis (eds Kyle, R. A. & Gertz, M. A.) 77–79 (Parthenon Publishing, New York 1999).

  104. Morgan, D. et al. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 408, 982–985 (2000).

    Article  CAS  PubMed  Google Scholar 

  105. Peretz, D. et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412, 739–743 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.W.K. thanks the members of his laboratory, who made the discoveries outlined in this review possible, and appreciates the financial support from the National Institutes of Health, The Skaggs Institute of Chemical Biology and the Lita Annenberg Hazen Foundation. J.C.S. thanks his laboratory and the Robert A. Welch Foundation for financial support.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

LocusLink

ABri

amyloid-P component

ANF

α1-antichymotrypsin

APOE

apolipoprotein A1

APP

calcitonin

cystatin C

fibrinogen

furin

gelsolin

huntingtin

IAPP

insulin

lactotransferrin

lysozyme

β2-microglobulin

prion protein

prolactin

β-secretase

serum amyloid A

superoxide dismutase

α-synuclein

TTR

OMIM

Alzheimer's disease

Down syndrome

familial amyloidosis of Finnish

familial amyotrophic lateral sclerosis

familial British dementia

gelsolin-based disease

haemodialysis-related amyloidosis

hereditary cerebral amyloid angiopathy

hereditary renal amyloidosis

Huntington's disease

Parkinson's disease

prion disease

transthyretin-based amyloid diseases

type II diabetes

FURTHER INFORMATION

Encyclopedia of Life Sciences

Alzheimer's disease

amyloidosis

prion diseases

LINKS

Neurochem

Glossary

EXTRACELLULAR MATRIX

A network of polysaccharides and proteoglycans that templates an assembly of cells to assist in function and impart strength.

ENDOPROTEOLYTIC PROCESSING

Refers to proteolytic cleavage of internal amide bonds in a protein — that is, all amides except those that connect the carboxy- and amino-terminal residues.

AMYLOIDOGENIC

Refers to a property of a protein that allows it to form amyloid fibrils in a human.

TRANSTHYRETIN

(TTR.) An amyloidogenic plasma protein that normally transports the retinol-binding protein–vitamin A complex and thyroxine.

MULTIGENIC DISEASE

A disease with a course that is influenced by the expression of more than one gene.

DENATURATION STRESS

A change in the aqueous environment of a protein, such as the pH or the dielectric constant, that causes it to denature.

QUATERNARY STRUCTURE

The association of proteins in a geometrically specific manner through non-covalent interactions.

FREE-ENERGY MINIMUM

Refers to the most stable conformation of a macromolecule.

ENDOCYTIC PATHWAY

The vesicular pathway by which molecules are taken into a cell.

ANALYTICAL ULTRACENTRIFUGATION

A method for determining quaternary structure that uses a centrifuge fitted with a UV detector to quantify concentration gradients.

STOICHIOMETRY

Refers to molar proportions in a reaction or assembly.

MULTIDENTATE

A binding interaction in which one partner can bind to two or more sites on another partner.

HYDROPHOBIC INTERACTION

A favourable interaction between nonpolar substructures or surfaces in aqueous solution that is characterized by a large change in heat capacity.

ELECTROSTATIC INTERACTION

A non-covalent dipole–dipole or induced dipole–dipole interaction that can be stabilizing or destabilizing.

SEEDED POLYMERIZATION

A mechanism of polymerization in which the quaternary structure or seed is formed in a rate-determining fashion. This is followed by rapid addition of monomer to afford a high-molecular-weight assembly such as an amyloid fibril.

MIMETIC

A molecule that mimics another.

SULPHONATED AROMATICS

An aromatic ring that is functionalized with a sulphonate functional group.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sacchettini, J., Kelly, J. Therapeutic strategies for human amyloid diseases. Nat Rev Drug Discov 1, 267–275 (2002). https://doi.org/10.1038/nrd769

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd769

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing