Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic modulation of Notch signalling — are we there yet?

Key Points

  • Notch signalling has key roles in the development and homeostasis of most organs, including — notably — the haematopoietic system, skin, vascular system and liver.

  • An increasing number of known human diseases relate to dysregulated Notch signalling, including developmental congenital disorders and cancers with de novo NOTCH mutations.

  • The core pathway is simple but provides ample potential therapeutic possibilities. Viable targets include inhibition of receptor cleavage by γ-secretase inhibitors and blockade of specific receptors or ligands with antibodies.

  • Crosstalk between Notch and other signalling mechanisms may provide possibilities for combinatorial treatments, especially in cancer where targeting several pathways simultaneously may offer considerable benefits. Numerous clinical trials are underway with the aim of modulating Notch signalling.

Abstract

The Notch signalling pathway is evolutionarily conserved and is crucial for the development and homeostasis of most tissues. Deregulated Notch signalling leads to various diseases, such as T cell leukaemia, Alagille syndrome and a stroke and dementia syndrome known as CADASIL, and so strategies to therapeutically modulate Notch signalling are of interest. Clinical trials of Notch pathway inhibitors in patients with solid tumours have been reported, and several approaches are under preclinical evaluation. In this Review, we focus on aspects of the pathway that are amenable to therapeutic intervention, diseases that could be targeted and the various Notch pathway modulation strategies that are currently being explored.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Notch signalling pathway.
Figure 2: The Notch pathway from a modulation perspective.
Figure 3: Divergent expression of Notch pathway genes in cancer.

Similar content being viewed by others

References

  1. Ellisen, L. W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991). This report describes the first characterization of a mammalian Notch gene and the first NOTCH1 translocations in T-ALL.

    CAS  PubMed  Google Scholar 

  2. Joutel, A. et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383, 707–710 (1996). This study identifies NOTCH3 as the gene that is mutated in the vascular cerebral stroke disorder CADASIL, which was the first finding of NOTCH mutations in a hereditary disorder.

    CAS  PubMed  Google Scholar 

  3. Oda, T. et al. Mutations in the human Jagged1 gene are responsible for Alagille syndrome. Nature Genet. 16, 235–242 (1997).

    CAS  PubMed  Google Scholar 

  4. McDaniell, R. et al. NOTCH2 mutations cause Alagille syndrome, a heterogeneous disorder of the notch signaling pathway. Am. J. Hum. Genet. 79, 169–173 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Puente, X. S. et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475, 101–105 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fabbri, G. et al. Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation. J. Exp. Med. 208, 1389–1401 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sparrow, D. B., Guillén-Navarro, E., Fatkin, D. & Dunwoodie, S. L. Mutation of Hairy-and-Enhancer-of-Split-7 in humans causes spondylocostal dysostosis. Hum. Mol. Genet. 17, 3761–3766 (2008).

    CAS  PubMed  Google Scholar 

  8. Sparrow, D. B. et al. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am. J. Hum. Genet. 78, 28–37 (2006).

    CAS  PubMed  Google Scholar 

  9. Whittock, N. V. et al. Mutated MESP2 causes spondylocostal dysostosis in humans. Am. J. Hum. Genet. 74, 1249–1254 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Andersson, E. R., Sandberg, R. & Lendahl, U. Notch signaling: simplicity in design, versatility in function. Development 138, 3593–3612 (2011).

    CAS  PubMed  Google Scholar 

  11. Guruharsha, K. G., Kankel, M. W. & Artavanis-Tsakonas, S. The Notch signalling system: recent insights into the complexity of a conserved pathway. Nature Rev. Genet. 13, 654–666 (2012).

    CAS  PubMed  Google Scholar 

  12. Shao, H., Huang, Q. & Liu, Z.-J. Targeting Notch signaling for cancer therapeutic intervention. Adv. Pharmacol. 65, 191–234 (2012).

    CAS  PubMed  Google Scholar 

  13. Groth, C. & Fortini, M. E. Therapeutic approaches to modulating Notch signaling: current challenges and future prospects. Semin. Cell Dev. Biol. 23, 465–472 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bray, S. J. Notch signalling: a simple pathway becomes complex. Nature Rev. Mol. Cell. Biol. 7, 678–689 (2006).

    CAS  Google Scholar 

  15. Coleman, M. L. et al. Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor. J. Biol. Chem. 282, 24027–24038 (2007).

    CAS  PubMed  Google Scholar 

  16. Zheng, X. et al. Interaction with factor inhibiting HIF-1 defines an additional mode of cross-coupling between the Notch and hypoxia signaling pathways. Proc. Natl Acad. Sci. USA 105, 3368–3373 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Espinosa, L., Ingles-Esteve, J., Aguilera, C. & Bigas, A. Phosphorylation by glycogen synthase kinase-3β down-regulates Notch activity, a link for Notch and Wnt pathways. J. Biol. Chem. 278, 32227–32235 (2003).

    CAS  PubMed  Google Scholar 

  18. King, B. et al. The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell 153, 1552–1566 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Richards, G. S. & Degnan, B. M. The dawn of developmental signaling in the metazoa. Cold Spring Harb. Symp. Quant. Biol. 74, 81–90 (2009).

    CAS  PubMed  Google Scholar 

  20. Ladi, E. et al. The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J. Cell Biol. 170, 983–992 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Geffers, I. et al. Divergent functions and distinct localization of the Notch ligands DLL1 and DLL3 in vivo. J. Cell Biol. 178, 465–476 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamamoto, S. et al. A mutation in EGF repeat-8 of Notch discriminates between Serrate/Jagged and Delta family ligands. Science 338, 1229–1232 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Andrawes, M. B. et al. Intrinsic selectivity of Notch 1 for Delta-like 4 over Delta-like 1. J. Biol. Chem. 288, 25477–25489 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Van de Walle, I. et al. Specific Notch receptor-ligand interactions control human TCR-αβ/γδ development by inducing differential Notch signal strength. J. Exp. Med. 210, 683–697 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Panin, V. M., Papayannopoulos, V., Wilson, R. & Irvine, K. D. Fringe modulates Notch-ligand interactions. Nature 387, 908–912 (1997).

    CAS  PubMed  Google Scholar 

  26. Hicks, C. et al. Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nature Cell Biol. 2, 515–520 (2000).

    CAS  PubMed  Google Scholar 

  27. Rana, N. A. & Haltiwanger, R. S. Fringe benefits: functional and structural impacts of O-glycosylation on the extracellular domain of Notch receptors. Curr. Opin. Struct. Biol. 21, 583–589 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jin, S. et al. Non-canonical Notch signaling activates IL-6/JAK/STAT signaling in breast tumor cells and is controlled by p53 and IKKα/IKKβ. Oncogene 32, 4892–4902 (2012).

    PubMed  PubMed Central  Google Scholar 

  29. Shimizu, K. et al. Mouse Jagged1 physically interacts with Notch2 and other Notch receptors. Assessment by quantitative methods. J. Biol. Chem. 274, 32961–32969 (1999).

    CAS  PubMed  Google Scholar 

  30. Rebay, I. et al. Specific EGF repeats of Notch mediate interactions with Delta and Serrate: implications for Notch as a multifunctional receptor. Cell 67, 687–699 (1991).

    CAS  PubMed  Google Scholar 

  31. Falk, R. et al. Generation of anti-Notch antibodies and their application in blocking Notch signalling in neural stem cells. Methods 58, 69–78 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, S. K. et al. Delta-like ligand 4-Notch blockade and tumor radiation response. J. Natl Cancer Inst. 103, 1–21 (2011).

    Google Scholar 

  33. Ohishi, K., Varnum-Finney, B., Serda, R. E., Anasetti, C. & Bernstein, I. D. The Notch ligand, Delta-1, inhibits the differentiation of monocytes into macrophages but permits their differentiation into dendritic cells. Blood 98, 1402–1407 (2001).

    CAS  PubMed  Google Scholar 

  34. Ohishi, K., Varnum-Finney, B. & Bernstein, I. D. Delta-1 enhances marrow and thymus repopulating ability of human CD34+CD38 cord blood cells. J. Clin. Invest. 110, 1165–1174 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Ohishi, K. et al. Monocytes express high amounts of Notch and undergo cytokine specific apoptosis following interaction with the Notch ligand, Delta-1. Blood 95, 2847–2854 (2000).

    CAS  PubMed  Google Scholar 

  36. Hicks, C. et al. A secreted Delta1-Fc fusion protein functions both as an activator and inhibitor of Notch1 signaling. J. Neurosci. Res. 68, 655–667 (2002).

    CAS  PubMed  Google Scholar 

  37. Czajkowsky, D. M., Hu, J., Shao, Z. & Pleass, R. J. Fc-fusion proteins: new developments and future perspectives. EMBO Mol. Med. 4, 1015–1028 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Gonçalves, R. M., Martins, M. C. L., Almeida-Porada, G. & Barbosa, M. A. Induction of notch signaling by immobilization of jagged-1 on self-assembled monolayers. Biomaterials 30, 6879–6887 (2009).

    PubMed  Google Scholar 

  39. Toda, H., Yamamoto, M., Kohara, H. & Tabata, Y. Orientation-regulated immobilization of Jagged1 on glass substrates for ex vivo proliferation of a bone marrow cell population containing hematopoietic stem cells. Biomaterials 32, 6920–6928 (2011).

    CAS  PubMed  Google Scholar 

  40. Varnum-Finney, B., Brashem-Stein, C. & Bernstein, I. D. Combined effects of Notch signaling and cytokines induce a multiple log increase in precursors with lymphoid and myeloid reconstituting ability. Blood 101, 1784–1789 (2003).

    CAS  PubMed  Google Scholar 

  41. Conboy, I. M., Conboy, M. J., Smythe, G. M. & Rando, T. A. Notch-mediated restoration of regenerative potential to aged muscle. Science 302, 1575–1577 (2003).

    CAS  PubMed  Google Scholar 

  42. Small, D. et al. Soluble Jagged 1 represses the function of its transmembrane form to induce the formation of the Src-dependent chord-like phenotype. J. Biol. Chem. 276, 32022–32030 (2001).

    CAS  PubMed  Google Scholar 

  43. Trifonova, R. et al. The non-transmembrane form of Delta1, but not of Jagged1, induces normal migratory behavior accompanied by fibroblast growth factor receptor 1-dependent transformation. J. Biol. Chem. 279, 13285–13288 (2004).

    CAS  PubMed  Google Scholar 

  44. Li, L. et al. The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. Immunity 8, 43–55 (1998).

    CAS  PubMed  Google Scholar 

  45. Kannan, S. et al. Notch activation inhibits AML growth and survival: a potential therapeutic approach. J. Exp. Med. 210, 321–337 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Androutsellis-Theotokis, A. et al. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442, 823–826 (2006).

    CAS  PubMed  Google Scholar 

  47. Lu, J. et al. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 23, 171–185 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nehring, L. C., Miyamoto, A., Hein, P. W., Weinmaster, G. & Shipley, J. M. The extracellular matrix protein MAGP-2 interacts with Jagged1 and induces its shedding from the cell surface. J. Biol. Chem. 280, 20349–20355 (2005).

    CAS  PubMed  Google Scholar 

  49. Chillakuri, C. R. et al. Structural analysis uncovers lipid-binding properties of Notch ligands. Cell Rep. 5, 861–867 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Cordle, J. et al. A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition. Nature Struct. Mol. Biol. 15, 849–857 (2008).

    CAS  Google Scholar 

  51. Logeat, F. et al. The Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl Acad. Sci. USA 95, 8108–8112 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Gordon, W. R. et al. Effects of S1 cleavage on the structure, surface export, and signaling activity of human Notch1 and Notch2. PLoS ONE 4, e6613 (2009).

    PubMed  PubMed Central  Google Scholar 

  53. Bush, G. et al. Ligand-induced signaling in the absence of furin processing of Notch1. Dev. Biol. 229, 494–502 (2001).

    CAS  PubMed  Google Scholar 

  54. Kidd, S. & Lieber, T. Furin cleavage is not a requirement for Drosophila Notch function. Mech. Dev. 115, 41–51 (2002).

    CAS  PubMed  Google Scholar 

  55. Seidah, N. G. & Prat, A. The biology and therapeutic targeting of the proprotein convertases. Nature Rev. Drug Discov. 11, 367–383 (2012).

    CAS  Google Scholar 

  56. Fernandez-Valdivia, R. et al. Regulation of mammalian Notch signaling and embryonic development by the protein O-glucosyltransferase Rumi. Development 138, 1925–1934 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Acar, M. et al. Rumi is a CAP10 domain glycosyltransferase that modifies Notch and is required for Notch signaling. Cell 132, 247–258 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Shi, S. & Stanley, P. Protein O-fucosyltransferase 1 is an essential component of Notch signaling pathways. Proc. Natl Acad. Sci. USA 100, 5234–5239 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sethi, M. K. et al. Identification of glycosyltransferase 8 family members as xylosyltransferases acting on O-glucosylated Notch epidermal growth factor repeats. J. Biol. Chem. 285, 1582–1586 (2010).

    CAS  PubMed  Google Scholar 

  60. Goode, S. & Perrimon, N. Brainiac and Fringe are similar pioneer proteins that impart specificity to notch signaling during Drosophila development. Cold Spring Harb. Symp. Quant. Biol. 62, 177–184 (1997).

    CAS  PubMed  Google Scholar 

  61. Moloney, D. J. et al. Fringe is a glycosyltransferase that modifies Notch. Nature 406, 369–375 (2000).

    CAS  PubMed  Google Scholar 

  62. Brückner, K., Perez, L., Clausen, H. & Cohen, S. Glycosyltransferase activity of Fringe modulates Notch–Delta interactions. Nature 406, 411–415 (2000).

    PubMed  Google Scholar 

  63. Wang, X. & Ha, T. Defining single molecular forces required to activate integrin and notch signaling. Science 340, 991–994 (2013).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Hansson, E. M. et al. Control of Notch-ligand endocytosis by ligand–receptor interaction. J. Cell Sci. 123, 2931–2942 (2010).

    CAS  PubMed  Google Scholar 

  65. Nichols, J. T. et al. DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur. J. Cell Biol. 176, 445–458 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Meloty-Kapella, L. et al. Optical tweezers studies on Notch: single-molecule interaction strength is independent of ligand endocytosis. Dev. Cell 22, 1313–1320 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. Brou, C. et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell 5, 207–216 (2000).

    CAS  PubMed  Google Scholar 

  68. Stephenson, N. L. & Avis, J. M. Direct observation of proteolytic cleavage at the S2 site upon forced unfolding of the Notch negative regulatory region. Proc. Natl Acad. Sci. USA 109, E2757–E2765 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Parks, A. L., Klueg, K. M., Stout, J. R. & Muskavitch, M. A. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127, 1373–1385 (2000).

    CAS  PubMed  Google Scholar 

  70. Mumm, J. S. et al. A ligand-induced extracellular cleavage regulates γ-secretase-like proteolytic activation of Notch1. Mol. Cell 5, 197–206 (2000).

    CAS  PubMed  Google Scholar 

  71. Van Tetering, G. & Vooijs, M. Proteolytic cleavage of Notch: “HIT and RUN''. Curr. Mol. Med. 11, 255–269 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Cousin, H., Abbruzzese, G., Kerdavid, E., Gaultier, A. & Alfandari, D. Translocation of the cytoplasmic domain of ADAM13 to the nucleus is essential for calpain8-a expression and cranial neural crest cell migration. Dev. Cell 20, 256–263 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Tousseyn, T. et al. ADAM10, the rate-limiting protease of regulated intramembrane proteolysis of Notch and other proteins, is processed by ADAMS-9, ADAMS-15, and the γ-secretase. J. Biol. Chem. 284, 11738–11747 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Wu, Y. et al. Therapeutic antibody targeting of individual Notch receptors. Nature 464, 1052–1057 (2010). This paper reports on the generation and characterization of antibodies that are specific for the NRRs of NOTCH1 and NOTCH2 , thus inhibiting the activation of the receptor and blocking Notch-driven tumour growth.

    CAS  PubMed  Google Scholar 

  75. De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    CAS  PubMed  Google Scholar 

  76. Struhl, G. & Greenwald, I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525 (1999). References 75 and 76 provide the first link between Notch receptor processing and the γ-secretase complex, a finding that is of considerable importance for research into GSIs and Alzheimer's disease.

    CAS  PubMed  Google Scholar 

  77. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    CAS  PubMed  Google Scholar 

  78. Gupta-Rossi, N. et al. Monoubiquitination and endocytosis direct γ-secretase cleavage of activated Notch receptor. J. Cell Biol. 166, 73–83 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sorensen, E. B. & Conner, S. γ-secretase-dependent cleavage initiates Notch signaling from the plasma membrane. Traffic 11, 1234–1245 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Tagami, S. et al. Regulation of Notch signaling by dynamic changes in the precision of S3 cleavage of Notch-1. Mol. Cell. Biol. 28, 165–176 (2008).

    CAS  PubMed  Google Scholar 

  81. Vaccari, T., Lu, H., Kanwar, R., Fortini, M. E. & Bilder, D. Endosomal entry regulates Notch receptor activation in Drosophila melanogaster. J. Cell Biol. 180, 755–762 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Okochi, M. et al. Presenilins mediate a dual intramembranous γ-secretase cleavage of Notch-1. EMBO J. 21, 5408–5416 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Okochi, M. et al. Secretion of the Notch-1 Aβ-like peptide during Notch signaling. J. Biol. Chem. 281, 7890–7898 (2006).

    CAS  PubMed  Google Scholar 

  84. Krejcí, A. & Bray, S. Notch activation stimulates transient and selective binding of Su(H)/CSL to target enhancers. Genes Dev. 21, 1322–1327 (2007).

    PubMed  PubMed Central  Google Scholar 

  85. Castel, D. et al. Dynamic binding of RBPJ is determined by Notch signaling status. Genes Dev. 27, 1059–1071 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Wilson, J. J. & Kovall, R. A. Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell 124, 985–996 (2006).

    CAS  PubMed  Google Scholar 

  87. Nam, Y., Sliz, P., Song, L., Aster, J. C. & Blacklow, S. C. Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell 124, 973–983 (2006). References 86 and 87 report on the crystal structure of the Notch transcriptional activation complex, including the ankyrin domain of Notch 1 and CSL on DNA, together with a MAML1 polypeptide. This shows that CSL and ankyrin form a groove for MAML binding, and this information is essential for constructing NICD–CSL-inhibiting peptides.

    CAS  PubMed  Google Scholar 

  88. Weng, A. P. et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of Notch signaling. Mol. Cell. Biol. 23, 655–664 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Maillard, I. et al. Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 104, 1696–1702 (2004).

    CAS  PubMed  Google Scholar 

  90. Maillard, I. et al. The requirement for Notch signaling at the β-selection checkpoint in vivo is absolute and independent of the pre–T cell receptor. J. Exp. Med. 203, 2239–2245 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Maillard, I. et al. Canonical Notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2, 356–366 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Osanyingbemi-Obidi, J., Dobromilskaya, I., Illei, P. B., Hann, C. L. & Rudin, C. M. Notch signaling contributes to lung cancer clonogenic capacity in vitro but may be circumvented in tumorigenesis in vivo. Mol. Cancer Res. 9, 1746–1754 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Shen, H. et al. The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev. 20, 675–688 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Saint Just Ribeiro, M. & Wallberg, A. E. Transcriptional mechanisms by the coregulator MAML1. Curr. Protein Pept. Sci. 10, 570–576 (2009).

    CAS  PubMed  Google Scholar 

  95. McElhinny, A. S., Li, J.-L. & Wu, L. Mastermind-like transcriptional co-activators: emerging roles in regulating cross talk among multiple signaling pathways. Oncogene 27, 5138–5147 (2008).

    CAS  PubMed  Google Scholar 

  96. Moellering, R. E. et al. Direct inhibition of the NOTCH transcription factor complex. Nature 462, 182–188 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Yuan, Z., Friedmann, D. R., VanderWielen, B. D., Collins, K. J. & Kovall, R. A. Characterization of CSL (CBF-1, Su(H), Lag-1) mutants reveals differences in signaling mediated by Notch1 and Notch2. J. Biol. Chem. 287, 34904–34916 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lubman, O. Y., Ilagan, M. X. G., Kopan, R. & Barrick, D. Quantitative dissection of the Notch:CSL interaction: insights into the Notch-mediated transcriptional switch. J. Mol. Biol. 365, 577–589 (2007).

    CAS  PubMed  Google Scholar 

  99. Johnson, J. E. & Macdonald, R. J. Notch-independent functions of CSL. Curr. Top. Dev. Biol. 97, 55–74 (2011).

    CAS  PubMed  Google Scholar 

  100. Foltz, D. R., Santiago, M. C., Berechid, B. E. & Nye, J. S. Glycogen synthase kinase-3β modulates Notch signaling and stability. Curr. Biol. 12, 1006–1011 (2002).

    CAS  PubMed  Google Scholar 

  101. Fryer, C. J., White, J. B. & Jones, K. A. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol. Cell 16, 509–520 (2004).

    CAS  PubMed  Google Scholar 

  102. Sjöqvist, M. et al. PKCζ regulates Notch receptor routing and activity in a Notch signaling-dependent manner. Cell Res. http://dx.doi.org/10.1038/cr.2014.34 (2014).

  103. Guarani, V. et al. Acetylation-dependent regulation of endothelial Notch signalling by the SIRT1 deacetylase. Nature 473, 234–238 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Le Bras, S., Loyer, N. & Le Borgne, R. The multiple facets of ubiquitination in the regulation of Notch signaling pathway. Traffic 12, 149–161 (2011).

    CAS  PubMed  Google Scholar 

  105. Hubbard, E. J. A., Wu, G., Kitajewski, J. & Greenwald, I. sel-10, a negative regulator of lin-12 activity in Caenorhabditis elegans, encodes a member of the CDC4 family of proteins. Genes Dev. 11, 3182–3193 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tsunematsu, R. et al. Mouse Fbw7/Sel-10/Cdc4 is required for Notch degradation during vascular development. J. Biol. Chem. 279, 9417–9423 (2004).

    CAS  PubMed  Google Scholar 

  107. Malyukova, A. et al. The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. Cancer Res. 67, 5611–5616 (2007).

    CAS  PubMed  Google Scholar 

  108. O'Neil, J. et al. FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J. Exp. Med. 204, 1813–1824 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. McGill, M. A. & McGlade, C. J. Mammalian Numb proteins promote Notch1 receptor ubiquitination and degradation of the Notch1 intracellular domain. J. Biol. Chem. 278, 23196–23203 (2003).

    CAS  PubMed  Google Scholar 

  110. Qiu, L. et al. Recognition and ubiquitination of Notch by Itch, a hect-type E3 ubiquitin ligase. J. Biol. Chem. 275, 35734–35737 (2000).

    CAS  PubMed  Google Scholar 

  111. Pettersson, S. et al. Non-degradative ubiquitination of the Notch1 receptor by the E3 ligase MDM2 activates the Notch signalling pathway. Biochem. J. 450, 523–536 (2013).

    CAS  PubMed  Google Scholar 

  112. Zhang, J., Liu, M., Su, Y., Du, J. & Zhu, A. J. A targeted in vivo RNAi screen reveals deubiquitinases as new regulators of Notch signaling. G3 2, 1563–1575 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Muñoz-Descalzo, S., Tkocz, K., Balayo, T. & Arias, A. M. Modulation of the ligand-independent traffic of Notch by Axin and Apc contributes to the activation of Armadillo in Drosophila. Development 138, 1501–1506 (2011).

    PubMed  PubMed Central  Google Scholar 

  114. Hayward, P., Balayo, T. & Martinez Arias, A. Notch synergizes with axin to regulate the activity of armadillo in Drosophila. Dev. Dyn. 235, 2656–2666 (2006).

    CAS  PubMed  Google Scholar 

  115. Hayward, P. et al. Notch modulates Wnt signalling by associating with Armadillo/β-catenin and regulating its transcriptional activity. Development 132, 1819–1830 (2005).

    CAS  PubMed  Google Scholar 

  116. Shimizu, T. et al. Stabilized β-catenin functions through TCF/LEF proteins and the Notch/RBP-Jκ complex to promote proliferation and suppress differentiation of neural precursor cells. Mol. Cell. Biol. 28, 7427–7441 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Yamamizu, K. et al. Convergence of Notch and β-catenin signaling induces arterial fate in vascular progenitors. J. Cell Biol. 189, 325–338 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Axelrod, J. D., Matsuno, K., Artavanis-Tsakonas, S. & Perrimon, N. Interaction between Wingless and Notch signaling pathways mediated by dishevelled. Science 271, 1826–1832 (1996).

    CAS  PubMed  Google Scholar 

  119. Muñoz-Descalzo, S. et al. Wingless modulates the ligand independent traffic of Notch through Dishevelled. Fly 4, 182–193 (2010).

    PubMed  Google Scholar 

  120. Blokzijl, A. et al. Cross-talk between the Notch and TGF-β signaling pathways mediated by interaction of the Notch intracellular domain with Smad3. J. Cell Biol. 163, 723–728 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Dahlqvist, C. et al. Functional Notch signaling is required for BMP4-induced inhibition of myogenic differentiation. Development 130, 6089–6099 (2003).

    CAS  PubMed  Google Scholar 

  122. Itoh, F. Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J. 23, 541–551 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Gustafsson, M. V. et al. Hypoxia requires Notch signaling to maintain the undifferentiated cell state. Dev. Cell 9, 617–628 (2005). This is the first report demonstrating crosstalk between Notch signalling and the cellular hypoxic response, which is important when considering therapeutic modulation of the cellular hypoxic response.

    CAS  PubMed  Google Scholar 

  124. Roti, G. et al. Complementary genomic screens identify SERCA as a therapeutic target in NOTCH1 mutated cancer. Cancer Cell 23, 390–405 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Ilagan, M. X. G. & Kopan, R. Selective blockade of transport via SERCA inhibition: the answer for oncogenic forms of Notch? Cancer Cell 23, 267–269 (2013).

    CAS  PubMed  Google Scholar 

  126. Andersen, P., Uosaki, H., Shenje, L. T. & Kwon, C. Non-canonical Notch signaling: emerging role and mechanism. Trends Cell Biol. 22, 257–265 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. D'Souza, B., Meloty-Kapella, L. & Weinmaster, G. Canonical and non-canonical Notch ligands. Curr. Top. Dev. Biol. 92, 73–129 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Sandy, A. R., Jones, M. & Maillard, I. Notch signaling and development of the hematopoietic system. Adv. Exp. Med. Biol. 727, 71–88 (2012).

    CAS  PubMed  Google Scholar 

  129. Xu, K., Moghal, N. & Egan, S. E. Notch signaling in lung development and disease. Adv. Exp. Med. Biol. 727, 89–98 (2012).

    CAS  PubMed  Google Scholar 

  130. Barak, H., Surendran, K. & Boyle, S. C. The role of Notch signaling in kidney development and disease. Adv. Exp. Med. Biol. 727, 99–113 (2012).

    CAS  PubMed  Google Scholar 

  131. Kume, T. Ligand-dependent Notch signaling in vascular formation. Adv. Exp. Med. Biol. 727, 210–222 (2012).

    CAS  PubMed  Google Scholar 

  132. Murata, J., Ikeda, K. & Okano, H. Notch signaling and the developing inner ear. Adv. Exp. Med. Biol. 727, 161–173 (2012).

    CAS  PubMed  Google Scholar 

  133. Aubin-Houzelstein, G. Notch signaling and the developing hair follicle. Adv. Exp. Med. Biol. 727, 142–160 (2012).

    CAS  PubMed  Google Scholar 

  134. Mead, T. J. & Yutzey, K. E. Notch signaling and the developing skeleton. Adv. Exp. Med. Biol. 727, 114–130 (2012).

    CAS  PubMed  Google Scholar 

  135. Clements, W. K. et al. A somitic Wnt16/Notch pathway specifies haematopoietic stem cells. Nature 474, 220–224 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol. 14, 637–645 (2002).

    CAS  PubMed  Google Scholar 

  137. Tanigaki, K. et al. Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nature Immunol. 3, 443–450 (2002).

    CAS  Google Scholar 

  138. Ciofani, M. & Zúñiga-Pflücker, J. C. Notch promotes survival of pre-T cells at the β-selection checkpoint by regulating cellular metabolism. Nature Immunol. 6, 881–888 (2005).

    CAS  Google Scholar 

  139. Lobry, C. et al. Notch pathway activation targets AML-initiating cell homeostasis and differentiation. J. Exp. Med. 210, 301–319 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Schroeder, T. & Just, U. Notch signalling via RBP-J promotes myeloid differentiation. EMBO J. 19, 2558–2568 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bigas, A., Martin, D. I. & Milner, L. A. Notch1 and Notch2 inhibit myeloid differentiation in response to different cytokines. Mol. Cell. Biol. 18, 2324–2333 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Oh, P. et al. In vivo mapping of notch pathway activity in normal and stress hematopoiesis. Cell Stem Cell 13, 190–204 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Klinakis, A. et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature 473, 230–233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Li, Y.-P. et al. Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the Notch pathway. J. Immunol. 180, 1598–1608 (2008).

    CAS  PubMed  Google Scholar 

  145. Bigas, A., D'Altri, T. & Espinosa, L. The Notch pathway in hematopoietic stem cells. Curr. Top. Microbiol. Immunol. 360, 1–18 (2012).

    CAS  PubMed  Google Scholar 

  146. Weng, A. P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004). This study reports that over 50% of T-ALL cases contain NOTCH -activating mutations, as a result of a mutation in the PEST domain or in the heterodimerization domain, which lead to hyperactivation.

    CAS  PubMed  Google Scholar 

  147. Thompson, B. J. et al. The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J. Exp. Med. 204, 1825–1835 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Henkel, T., Ling, P. D., Hayward, S. D. & Peterson, M. G. Mediation of Epstein–Barr virus EBNA2 transactivation by recombination signal-binding protein Jκ. Science 265, 92–95 (1994).

    CAS  PubMed  Google Scholar 

  149. Cotter, M., Callahan, J., Aster, J. & Robertson, E. Intracellular forms of human NOTCH1 functionally activate essential Epstein–Barr virus major latent promoters in the Burkitt's lymphoma BJAB cell line but repress these promoters in Jurkat cells. J. Virol. 74, 1486–1494 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Strobl, L. J. et al. Activated Notch1 modulates gene expression in B cells similarly to Epstein-Barr viral nuclear antigen 2. J. Virol. 74, 1727–1735 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Callahan, J., Aster, J., Sklar, J., Kieff, E. & Robertson, E. S. Intracellular forms of human NOTCH1 interact at distinctly different levels with RBP-jkappa in human B and T cells. Leukemia 14, 84–92 (2000).

    CAS  PubMed  Google Scholar 

  152. Kridel, R. et al. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood 119, 1963–1971 (2012).

    CAS  PubMed  Google Scholar 

  153. Dumortier, A. et al. Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS ONE 5, e9258 (2010).

    PubMed  PubMed Central  Google Scholar 

  154. The Cancer Genome Atlas Research Network. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059–2074 (2013).

  155. Grieselhuber, N. R. et al. Notch signaling in acute promyelocytic leukemia. Leukemia 27, 1548–1557 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Wang, Q., Zhao, N., Kennard, S. & Lilly, B. Notch2 and Notch3 function together to regulate vascular smooth muscle development. PLoS ONE 7, e37365 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Domenga, V. et al. Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev. 18, 2730–2735 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Liu, H., Zhang, W., Kennard, S., Caldwell, R. B. & Lilly, B. Notch3 is critical for proper angiogenesis and mural cell investment. Circ. Res. 107, 860–870 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Oka, C. et al. Disruption of the mouse RBP-J κ gene results in early embryonic death. Development 121, 3291–3301 (1995).

    CAS  PubMed  Google Scholar 

  160. Gale, N. W. et al. Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc. Natl Acad. Sci. USA 101, 15949–15954 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Xue, Y. et al. Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1. Hum. Mol. Genet. 8, 723–730 (1999).

    CAS  PubMed  Google Scholar 

  162. McCright, B. et al. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128, 491–502 (2001).

    CAS  PubMed  Google Scholar 

  163. Krebs, L. T. et al. Notch signaling is essential for vascular morphogenesis in mice. Genes Dev. 14, 1343–1352 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Lawson, N. D., Vogel, A. M. & Weinstein, B. M. Sonic hedgehog and vascular endothelial growth factor act upstream of the Notch pathway during arterial endothelial differentiation. Dev. Cell 3, 127–136 (2002).

    CAS  PubMed  Google Scholar 

  165. Zhong, T. P., Childs, S., Leu, J. P. & Fishman, M. C. Gridlock signalling pathway fashions the first embryonic artery. Nature 414, 216–220 (2001).

    CAS  PubMed  Google Scholar 

  166. Jakobsson, L. et al. Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nature Cell Biol. 12, 943–953 (2010).

    CAS  PubMed  Google Scholar 

  167. Liu, Z. et al. Notch1 loss of heterozygosity causes vascular tumors and lethal hemorrhage in mice. J. Clin. Invest. 121, 800–808 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Yan, M. et al. Chronic DLL4 blockade induces vascular neoplasms. Nature 463, E6–E7 (2010). This paper demonstrates that long-term use of DLL4 antibodies and DLL4-antagonistic peptides induces endothelial cell activation and bile duct proliferation, as well as vascular tumours, in rats and monkeys. This suggests that although this therapy is more directly targeted than broad-spectrum Notch inhibition, it poses risks.

    CAS  PubMed  Google Scholar 

  169. Mosquera, J.-M. et al. Novel MIR143-NOTCH fusions in benign and malignant glomus tumors. Genes. Chromosomes Cancer 52, 1075–1087 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Joutel, A. et al. Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350, 1511–1515 (1997).

    CAS  PubMed  Google Scholar 

  171. Monet-Leprêtre, M. et al. Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain 136, 1830–1845 (2013).

    PubMed  PubMed Central  Google Scholar 

  172. Joutel, A. et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J. Clin. Invest. 120, 433–445 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Li, X. et al. Notch3 signaling promotes the development of pulmonary arterial hypertension. Nature Med. 15, 1289–1297 (2009). This study shows that Notch 3 is upregulated in human PAH in small pulmonary artery smooth muscle cells and that disease severity correlates with Notch 3 protein levels in the lung. In addition, Notch 3 activity is required for the development of PAH in a mouse model of this disease.

    CAS  PubMed  Google Scholar 

  174. Yu, Y.-R. A., Mao, L., Piantadosi, C. A. & Gunn, M. D. CCR2 deficiency, dysregulation of Notch signaling, and spontaneous pulmonary arterial hypertension. Am. J. Respir. Cell. Mol. Biol. 48, 647–654 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. De la Pompa, J. L. & Epstein, J. A. Coordinating tissue interactions: Notch signaling in cardiac development and disease. Dev. Cell 22, 244–254 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Timmerman, L. A. et al. Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes Dev. 18, 99–115 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Grego-Bessa, J. et al. Notch signaling is essential for ventricular chamber development. Dev. Cell 12, 415–429 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. High, F. A. et al. Murine Jagged1/Notch signaling in the second heart field orchestrates Fgf8 expression and tissue-tissue interactions during outflow tract development. J. Clin. Invest. 119, 1986–1996 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Jain, R. et al. Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves. J. Clin. Invest. 121, 422–430 (2011).

    CAS  PubMed  Google Scholar 

  180. Rutenberg, J. B. et al. Developmental patterning of the cardiac atrioventricular canal by Notch and Hairy-related transcription factors. Development 133, 4381–4390 (2006).

    CAS  PubMed  Google Scholar 

  181. Watanabe, Y. et al. Activation of Notch1 signaling in cardiogenic mesoderm induces abnormal heart morphogenesis in mouse. Development 133, 1625–1634 (2006).

    CAS  PubMed  Google Scholar 

  182. Luna-Zurita, L. et al. Integration of a Notch-dependent mesenchymal gene program and Bmp2-driven cell invasiveness regulates murine cardiac valve formation. J. Clin. Invest. 120, 3493–3507 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Rentschler, S. et al. Notch signaling regulates murine atrioventricular conduction and the formation of accessory pathways. J. Clin. Invest. 121, 525–533 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Garg, V. et al. Mutations in NOTCH1 cause aortic valve disease. Nature 437, 270–274 (2005).

    CAS  PubMed  Google Scholar 

  185. Mohamed, S. A. et al. Novel missense mutations (p. T596M and p. P1797H) in NOTCH1 in patients with bicuspid aortic valve. Biochem. Biophys. Res. Commun. 345, 1460–1465 (2006).

    CAS  PubMed  Google Scholar 

  186. McKellar, S. H. et al. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J. Thorac. Cardiovasc. Surg. 134, 290–296 (2007).

    CAS  PubMed  Google Scholar 

  187. Nigam, V. & Srivastava, D. Notch1 represses osteogenic pathways in aortic valve cells. J. Mol. Cell. Cardiol. 47, 828–834 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Nus, M. et al. Diet-induced aortic valve disease in mice haploinsufficient for the Notch pathway effector RBPJK/CSL. Arterioscler. Thromb. Vasc. Biol. 31, 1580–1588 (2011).

    CAS  PubMed  Google Scholar 

  189. Isidor, B. et al. Truncating mutations in the last exon of NOTCH2 cause a rare skeletal disorder with osteoporosis. Nature Genet. 43, 306–308 (2011).

    CAS  PubMed  Google Scholar 

  190. Simpson, M. A. et al. Mutations in NOTCH2 cause Hajdu–Cheney syndrome, a disorder of severe and progressive bone loss. Nature Genet. 43, 303–305 (2011). References 189 and 190 identify nonsense and frameshift mutations in NOTCH2 in patients with Hajdu–Cheney syndrome.

  191. Lowell, S., Jones, P., Le Roux, I., Dunne, J. & Watt, F. M. Stimulation of human epidermal differentiation by Delta–Notch signalling at the boundaries of stem-cell clusters. Curr. Biol. 10, 491–500 (2000).

    CAS  PubMed  Google Scholar 

  192. Thelu, J., Rossio, P., Favier, B. & Thélu, J. Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol. 2, 7 (2002).

    PubMed  PubMed Central  Google Scholar 

  193. Rangarajan, A. et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 20, 3427–3436 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Mammucari, C. et al. Integration of Notch 1 and calcineurin/NFAT signaling pathways in keratinocyte growth and differentiation control. Dev. Cell 8, 665–676 (2005).

    CAS  PubMed  Google Scholar 

  195. Blanpain, C., Lowry, W. E., Pasolli, H. A. & Fuchs, E. Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev. 20, 3022–3035 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nature Genet. 33, 416–421 (2003). This report provides the first genetic evidence of a role for Notch as a tumour suppressor gene.

    CAS  PubMed  Google Scholar 

  197. Demehri, S. et al. Notch-deficient skin induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a sentinel for epidermal integrity. PLoS Biol. 6, e123 (2008).

    PubMed  PubMed Central  Google Scholar 

  198. Di Piazza, M., Nowell, C. S., Koch, U., Durham, A.-D. & Radtke, F. Loss of cutaneous TSLP-dependent immune responses skews the balance of inflammation from tumor protective to tumor promoting. Cancer Cell 22, 479–493 (2012).

    CAS  PubMed  Google Scholar 

  199. Demehri, S. et al. Elevated epidermal thymic stromal lymphopoietin levels establish an antitumor environment in the skin. Cancer Cell 22, 494–505 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Pickering, C. R. et al. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov. 3, 770–781 (2013).

    CAS  PubMed  Google Scholar 

  201. Jithesh, P. V. et al. The epigenetic landscape of oral squamous cell carcinoma. Br. J. Cancer 108, 370–379 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Yoshida, R. et al. The pathological significance of Notch1 in oral squamous cell carcinoma. Lab. Invest. 93, 1068–1081 (2013).

    CAS  PubMed  Google Scholar 

  203. Pourquié, O. Vertebrate segmentation: from cyclic gene networks to scoliosis. Cell 145, 650–663 (2011).

    PubMed  PubMed Central  Google Scholar 

  204. Dequéant, M.-L. et al. A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314, 1595–1598 (2006).

    PubMed  Google Scholar 

  205. Dias, A. S., de Almeida, I., Belmonte, J. M., Glazier, J. A. & Stern, C. D. Somites without a clock. Science 343, 791–795 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Bulman, M. P. et al. Mutations in the human Delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nature Genet. 24, 438–441 (2000).

    CAS  PubMed  Google Scholar 

  207. Cornier, A. S. et al. Mutations in the MESP2 gene cause spondylothoracic dysostosis/Jarcho-Levin syndrome. Am. J. Hum. Genet. 82, 1334–1341 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Sparrow, D. B. et al. A mechanism for gene-environment interaction in the etiology of congenital scoliosis. Cell 149, 295–306 (2012). This report describes a link between an environmental cue (hypoxia) and genetic mutations in the Notch signalling system for disease aetiology.

    CAS  PubMed  Google Scholar 

  209. Lewis, J. Rules for the production of sensory cells. Ciba Found. Symp. 160, 25–39; discussion 40–53 (1991).

    CAS  PubMed  Google Scholar 

  210. Kiernan, A. E., Cordes, R., Kopan, R., Gossler, A. & Gridley, T. The Notch ligands DLL1 and JAG2 act synergistically to regulate hair cell development in the mammalian inner ear. Development 132, 4353–4362 (2005).

    CAS  PubMed  Google Scholar 

  211. Haddon, C., Jiang, Y. J., Smithers, L. & Lewis, J. Delta-Notch signalling and the patterning of sensory cell differentiation in the zebrafish ear: evidence from the mind bomb mutant. Development 125, 4637–4644 (1998).

    CAS  PubMed  Google Scholar 

  212. Haddon, C. et al. Hair cells without supporting cells: further studies in the ear of the zebrafish mind bomb mutant. J. Neurocytol. 28, 837–850 (1999).

    CAS  PubMed  Google Scholar 

  213. Tateya, T., Imayoshi, I., Tateya, I., Ito, J. & Kageyama, R. Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development. Dev. Biol. 352, 329–340 (2011).

    CAS  PubMed  Google Scholar 

  214. Kiernan, A. E. et al. The Notch ligand Jagged1 is required for inner ear sensory development. Proc. Natl Acad. Sci. USA 98, 3873–3878 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Tsai, H. et al. The mouse slalom mutant demonstrates a role for Jagged1 in neuroepithelial patterning in the organ of Corti. Hum. Mol. Genet. 10, 507–512 (2001).

    CAS  PubMed  Google Scholar 

  216. Vrijens, K. et al. Ozzy, a Jag1 vestibular mouse mutant, displays characteristics of Alagille syndrome. Neurobiol. Dis. 24, 28–40 (2006).

    CAS  PubMed  Google Scholar 

  217. McCright, B., Lozier, J. & Gridley, T. A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129, 1075–1082 (2002).

    CAS  PubMed  Google Scholar 

  218. Yanger, K. et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 27, 719–724 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Pajvani, U. B. et al. Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nature Med. 19, 1054–1060 (2013).

    CAS  PubMed  Google Scholar 

  220. Zender, S. et al. A critical role for Notch signaling in the formation of cholangiocellular carcinomas. Cancer Cell 23, 784–795 (2013).

    CAS  PubMed  Google Scholar 

  221. Villanueva, A. et al. Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology 143, 1660–1669.e7 (2012). This paper shows that NICD produces hepatocellular carcinoma in mice and reveals a Notch expression signature in patients with hepatocellular carcinoma.

    CAS  PubMed  Google Scholar 

  222. Raouf, A. et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 3, 109–118 (2008).

    CAS  PubMed  Google Scholar 

  223. Bouras, T. et al. Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 3, 429–441 (2008).

    CAS  PubMed  Google Scholar 

  224. Pece, S. et al. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J. Cell Biol. 167, 215–221 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Stylianou, S., Clarke, R. B. & Brennan, K. Aberrant activation of Notch signaling in human breast cancer. Cancer Res. 66, 1517–1525 (2006).

    CAS  PubMed  Google Scholar 

  226. Robinson, D. R. et al. Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nature Med. 17, 1646–1651 (2011).

    CAS  PubMed  Google Scholar 

  227. Qiu, M. et al. Specific inhibition of Notch1 signaling enhances the antitumor efficacy of chemotherapy in triple negative breast cancer through reduction of cancer stem cells. Cancer Lett. 328, 261–270 (2013).

    CAS  PubMed  Google Scholar 

  228. Gallahan, D. et al. Expression of a truncated Int3 gene in developing secretory mammary epithelium specifically retards lobular differentiation resulting in tumorigenesis. Cancer Res. 56, 1775–1785 (1996).

    CAS  PubMed  Google Scholar 

  229. Robbins, J., Blondel, B. J., Gallahan, D. & Callahan, R. Mouse mammary tumor gene int-3: a member of the notch gene family transforms mammary epithelial cells. J. Virol. 66, 2594–2599 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Landor, S. K.-J. et al. Hypo- and hyperactivated Notch signaling induce a glycolytic switch through distinct mechanisms. Proc. Natl Acad. Sci. USA 108, 18814–18819 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Šale, S., Lafkas, D. & Artavanis-Tsakonas, S. Notch2 genetic fate mapping reveals two previously unrecognized mammary epithelial lineages. Nature Cell Biol. 15, 451–460 (2013).

    PubMed  Google Scholar 

  232. Parr, C., Watkins, G. & Jiang, W. G. The possible correlation of Notch-1 and Notch-2 with clinical outcome and tumour clinicopathological parameters in human breast cancer. Int. J. Mol. Med. 14, 779–786 (2004).

    CAS  PubMed  Google Scholar 

  233. O'Neill, C. F. et al. Notch2 signaling induces apoptosis and inhibits human MDA-MB-231 xenograft growth. Am. J. Pathol. 171, 1023–1036 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  234. Stephens, P. J. et al. Whole exome sequencing of adenoid cystic carcinoma. J. Clin. Invest. 123, 2965–2968 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Deangelo, D. J. et al. A phase I clinical trial of the notch inhibitor MK-0752 in patients with T-cell acute lymphoblastic leukemia/lymphoma (T-ALL) and other leukemias. J. Clin. Oncol. Abstr. 24, 6585 (2006).

    Google Scholar 

  236. Ridgway, J. et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature 444, 1083–1087 (2006). This paper, along with reference 241, demonstrates that specific inhibition of DLL4 signalling alters tumour neovascularization such that tumour growth is inhibited in animal models.

    CAS  PubMed  Google Scholar 

  237. Li, J.-L. et al. Delta-like 4 Notch ligand regulates tumor angiogenesis, improves tumor vascular function, and promotes tumor growth in vivo. Cancer Res. 67, 11244–11253 (2007).

    CAS  PubMed  Google Scholar 

  238. Kuramoto, T. et al. Dll4-Fc, an inhibitor of Dll4-Notch signaling, suppresses liver metastasis of small cell lung cancer cells through the downregulation of the NF-κB activity. Mol. Cancer Ther. 11, 2578–2587 (2012).

    CAS  PubMed  Google Scholar 

  239. Jenkins, D. W. et al. MEDI0639: a novel therapeutic antibody targeting Dll4 modulates endothelial cell function and angiogenesis in vivo. Mol. Cancer Ther. 11, 1650–1660 (2012).

    CAS  PubMed  Google Scholar 

  240. Scehnet, J. S. et al. Inhibition of Dll4-mediated signaling induces proliferation of immature vessels and results in poor tissue perfusion. Blood 109, 4753–4760 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Noguera-Troise, I. et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444, 1032–1037 (2006). This paper, along with reference 236, demonstrates that specific inhibition of DLL4 signalling alters tumour neovascularization such that tumour growth is inhibited in animal models.

    CAS  PubMed  Google Scholar 

  242. Zhao, X.-C. et al. Inhibition of tumor angiogenesis and tumor growth by the DSL domain of human Delta-like 1 targeted to vascular endothelial cells. Neoplasia 15, 815–825 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Li, K. et al. Modulation of Notch signaling by antibodies specific for the extracellular negative regulatory region of NOTCH3. J. Biol. Chem. 283, 8046–8054 (2008).

    CAS  PubMed  Google Scholar 

  244. Tolcher, Anthony, W. et al. A first-in-human phase I study to evaluate the fully human monoclonal antibody OMP-59R5 (anti-Notch2/3) administered intravenously to patients with advanced solid tumors. J. Clin. Oncol. Abstr. 30, 3025 (2012).

    Google Scholar 

  245. Davis, S. L. et al. Abstract B48: a first-in-human Phase I study of the novel cancer stem cell (CSC) targeting antibody OMP-52M51 (anti-Notch1) administered intravenously to patients with certain advanced solid tumors. Mol. Cancer Ther. 12, B48 (2013).

    Google Scholar 

  246. Doody, R. S. et al. A phase 3 trial of semagacestat for treatment of Alzheimer's disease. N. Engl. J. Med. 369, 341–350 (2013). This study reports on the effects of a GSI (semagacestat) in a Phase III clinical trial for Alzheimer's disease. The trial was terminated before completion, as patients showed off-target effects such as increased incidence of skin cancer and reduced numbers of lymphocytes — effects that are possibly due to perturbed Notch signalling.

    CAS  PubMed  Google Scholar 

  247. Tolcher, A. W. et al. Phase I study of RO4929097, a gamma secretase inhibitor of Notch signaling, in patients with refractory metastatic or locally advanced solid tumors. J. Clin. Oncol. 30, 2348–2353 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Rosen, L. B. et al. The gamma secretase inhibitor MK-0752 acutely and significantly reduces CSF Abeta40 concentrations in humans. Alzheimers Dement. 2, S79 (2006).

    Google Scholar 

  249. Krop, I. et al. Phase I pharmacologic and pharmacodynamic study of the gamma secretase (Notch) inhibitor MK-0752 in adult patients with advanced solid tumors. J. Clin. Oncol. 30, 2307–2313 (2012).

    CAS  PubMed  Google Scholar 

  250. Kolb, E. A. et al. Initial testing (stage 1) by the pediatric preclinical testing program of RO4929097, a γ-secretase inhibitor targeting notch signaling. Pediatr. Blood Cancer 58, 815–818 (2012).

    PubMed  Google Scholar 

  251. Luistro, L. et al. Preclinical profile of a potent γ-secretase inhibitor targeting Notch signaling with in vivo efficacy and pharmacodynamic properties. Cancer Res. 69, 7672–7680 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Strosberg, J. R. et al. A phase II study of RO4929097 in metastatic colorectal cancer. Eur. J. Cancer 48, 997–1003 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Wang, Z. et al. Targeting Notch signaling pathway to overcome drug resistance for cancer therapy. Biochim. Biophys. Acta 1806, 258–267 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Yu, S.-D., Liu, F.-Y. & Wang, Q.-R. Notch inhibitor: a promising carcinoma radiosensitizer. Asian Pac. J. Cancer Prev. 13, 5345–5351 (2012).

    PubMed  Google Scholar 

  255. Timme, C. R., Gruidl, M. & Yeatman, T. J. Gamma-secretase inhibition attenuates oxaliplatin-induced apoptosis through increased Mcl-1 and/or Bcl-xL in human colon cancer cells. Apoptosis 18, 1163–1174 (2013).

    CAS  PubMed  Google Scholar 

  256. Meng, R. D. et al. γ-secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res. 69, 573–582 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Liu, S., Breit, S., Danckwardt, S., Muckenthaler, M. U. & Kulozik, A. E. Downregulation of Notch signaling by γ-secretase inhibition can abrogate chemotherapy-induced apoptosis in T-ALL cell lines. Ann. Hematol. 88, 613–621 (2009).

    CAS  PubMed  Google Scholar 

  258. Sahebjam, S. et al. A phase I study of the combination of RO4929097 and cediranib in patients with advanced solid tumours (PJC-004/NCI 8503). Br. J. Cancer 109, 943–949 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  259. Diaz-Padilla, I. et al. A phase Ib combination study of RO4929097, a gamma-secretase inhibitor, and temsirolimus in patients with advanced solid tumors. Invest. New Drugs 31, 1182–1191 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Richter, S. et al. A phase I study of the oral gamma secretase inhibitor R04929097 in combination with gemcitabine in patients with advanced solid tumors (PHL-078/CTEP 8575). Invest. New Drugs 32, 243–249 (2014).

    CAS  PubMed  Google Scholar 

  261. Mizutari, K. et al. Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron 77, 58–69 (2013). This study describes the effects of using a GSI in a mouse model of acoustic trauma to improve hair cell regrowth and induce partial recovery of hearing.

    CAS  PubMed  PubMed Central  Google Scholar 

  262. Slowik, A. D. & Bermingham-McDonogh, O. Hair cell generation by Notch inhibition in the adult mammalian cristae. J. Assoc. Res. Otolaryngol. 14, 813–828 (2013).

    PubMed  PubMed Central  Google Scholar 

  263. Jin, S. et al. Notch signaling regulates platelet-derived growth factor receptor-β expression in vascular smooth muscle cells. Circ. Res. 102, 1483–1491 (2008).

    CAS  PubMed  Google Scholar 

  264. Eickelberg, O. & Morty, R. E. Transforming growth factor β/bone morphogenic protein signaling in pulmonary arterial hypertension: remodeling revisited. Trends Cardiovasc. Med. 17, 263–269 (2007).

    CAS  PubMed  Google Scholar 

  265. O'Callaghan, D. S. et al. Treatment of pulmonary arterial hypertension with targeted therapies. Nature Rev. Cardiol. 8, 526–538 (2011).

    CAS  Google Scholar 

  266. Tran, I. T. et al. Blockade of individual Notch ligands and receptors controls graft-versus-host disease. J. Clin. Invest. 123, 1590–1604 (2013). This report demonstrates that blocking DLL1 and DLL4 reduces GVHD without having adverse side effects in mouse models. A transient blockade was shown to be sufficient for durable protection.

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Chen, Y. et al. Inhibition of Notch signaling by a γ-secretase inhibitor attenuates hepatic fibrosis in rats. PLoS ONE 7, e46512 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Siemers, E. R. et al. Effects of a γ-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology 66, 602–604 (2006).

    CAS  PubMed  Google Scholar 

  269. Fleisher, A. S. et al. Phase 2 safety trial targeting amyloid β production with a γ-secretase inhibitor in Alzheimer disease. Arch. Neurol. 65, 1031–1038 (2008).

    PubMed  PubMed Central  Google Scholar 

  270. Pandya, K. et al. Targeting both Notch and ErbB-2 signalling pathways is required for prevention of ErbB-2-positive breast tumour recurrence. Br. J. Cancer 105, 796–806 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  271. Farnie, G., Willan, P. M., Clarke, R. B. & Bundred, N. J. Combined inhibition of ErbB1/2 and Notch receptors effectively targets breast ductal carcinoma in situ (DCIS) stem/progenitor cell activity regardless of ErbB2 status. PLoS ONE 8, e56840 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  272. Ma, Y. et al. Inhibition of the Wnt-β-catenin and Notch signaling pathways sensitizes osteosarcoma cells to chemotherapy. Biochem. Biophys. Res. Commun. 431, 274–279 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  273. Jin, R. et al. Combination therapy using Notch and Akt inhibitors is effective for suppressing invasion but not proliferation in glioma cells. Neurosci. Lett. 534, 316–321 (2013).

    CAS  PubMed  Google Scholar 

  274. Shepherd, C. et al. PI3K/mTOR inhibition upregulates NOTCH–MYC signalling leading to an impaired cytotoxic response. Leukemia 27, 650–660 (2013).

    CAS  PubMed  Google Scholar 

  275. Yao, J. et al. Combination treatment of PD98059 and DAPT in gastric cancer through induction of apoptosis and downregulation of WNT/β-catenin. Cancer Biol. Ther. 14, 833–839 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Slowing, I. I., Trewyn, B. G., Giri, S. & Lin, V. S. Y. Mesoporous silica nanoparticles for drug delivery and biosensing applications. Adv. Funct. Mater. 17, 1225–1236 (2007).

    CAS  Google Scholar 

  277. Mamaeva, V. et al. Mesoporous silica nanoparticles as drug delivery systems for targeted inhibition of Notch signaling in cancer. Mol. Ther. J. Am. Soc. Gene Ther. 19, 1538–1546 (2011).

    CAS  Google Scholar 

  278. Beckstead, B. L. et al. Methods to promote Notch signaling at the biomaterial interface and evaluation in a rafted organ culture model. J. Biomed. Mater. Res. Part A 91, 436–446 (2009).

    Google Scholar 

  279. Kovall, R. A. & Blacklow, S. C. Mechanistic insights into Notch receptor signaling from structural and biochemical studies. Curr. Top. Dev. Biol. 92, 31–71 (2010).

    CAS  PubMed  Google Scholar 

  280. Hock, B. et al. PDZ-domain-mediated interaction of the Eph-related receptor tyrosine kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor. Proc. Natl Acad. Sci. USA 95, 9779–9784 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  281. LaVoie, M. J. & Selkoe, D. J. The Notch ligands, Jagged and Delta, are sequentially processed by α-secretase and presenilin/γ-secretase and release signaling fragments. J. Biol. Chem. 278, 34427–34437 (2003).

    CAS  PubMed  Google Scholar 

  282. Higaki, J., Quon, D., Zhong, Z. & Cordell, B. Inhibition of β-amyloid formation identifies proteolytic precursors and subcellular site of catabolism. Neuron 14, 651–659 (1995).

    CAS  PubMed  Google Scholar 

  283. Barthet, G., Georgakopoulos, A. & Robakis, N. K. Cellular mechanisms of γ-secretase substrate selection, processing and toxicity. Prog. Neurobiol. 98, 166–175 (2012).

    CAS  PubMed  Google Scholar 

  284. Wolfe, M. S. γ-secretase as a target for Alzheimer's disease. Adv. Pharmacol. 64, 127–153 (2012).

    CAS  PubMed  Google Scholar 

  285. Louvi, A. & Artavanis-Tsakonas, S. Notch and disease: a growing field. Semin. Cell Dev. Biol. 23, 473–480 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Willander, K. et al. NOTCH1 mutations influence survival in chronic lymphocytic leukemia patients. BMC Cancer 13, 274 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  287. Zong, Y. & Stanger, B. Z. Molecular mechanisms of bile duct development. Int. J. Biochem. Cell Biol. 43, 257–264 (2011).

    CAS  PubMed  Google Scholar 

  288. Massi, D. & Panelos, J. Notch signaling and the developing skin epidermis. Adv. Exp. Med. Biol. 727, 131–141 (2012).

    CAS  PubMed  Google Scholar 

  289. Martignetti, J. A. et al. Mutations in PDGFRB cause autosomal-dominant infantile myofibromatosis. Am. J. Hum. Genet. 92, 1001–1007 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  290. Lee, J. Mutations in PDGFRB and NOTCH3 are the first genetic causes identified for autosomal dominant infantile myofibromatosis. Clin. Genet. 84, 340–341 (2013).

    CAS  PubMed  Google Scholar 

  291. Michailidis, C. et al. Notch2, Notch4 gene polymorphisms in psoriasis vulgaris. Eur. J. Dermatol. 23, 146–153 (2013).

    CAS  PubMed  Google Scholar 

  292. Sun, W. et al. Activation of the NOTCH pathway in head and neck cancer. Cancer Res. 74, 1091–1104 (2013).

    PubMed  PubMed Central  Google Scholar 

  293. Wang, N. J. et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc. Natl Acad. Sci. USA 108, 17761–17766 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Agrawal, N. et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333, 1154–1157 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  295. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  296. Dunwoodie, S. L. The role of Notch in patterning the human vertebral column. Curr. Opin. Genet. Dev. 19, 329–337 (2009).

    CAS  PubMed  Google Scholar 

  297. Regan, J. & Long, F. Notch signaling and bone remodeling. Curr. Osteoporos. Rep. 11, 126–129 (2013).

    PubMed  PubMed Central  Google Scholar 

  298. Fouillade, C., Monet-Leprêtre, M., Baron-Menguy, C. & Joutel, A. Notch signalling in smooth muscle cells during development and disease. Cardiovasc. Res. 95, 138–146 (2012).

    CAS  PubMed  Google Scholar 

  299. Benedito, R. & Hellström, M. Notch as a hub for signaling in angiogenesis. Exp. Cell Res. 319, 1281–1288 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

E.R.A. holds a junior research grant from the Swedish Research Council. Work in U.L.'s laboratory is funded by the Swedish Research Council (DBRM, StratRegen and project grant), the Swedish Cancer Society, Knut och Alice Wallenbergs Stiftelse and Karolinska Institutet (the Breast Cancer Theme Center (BRECT) and a Distinguished Professor Award).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urban Lendahl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Ongoing and completed studies with Notch targeting (from clinicaltrials.gov), same as Table 3, but including stated purpose of trial. (PDF 231 kb)

Related links

Related links

FURTHER INFORMATION

ClinicalTrials.gov website

GENE-E

GENE-E/KEGG Notch signalling pathway

InterProScan 4 (EMBL-EBI)

Oncomine

The Cancer Genome Atlas

The Cancer Genome Atlas Data Portal

US National Cancer Institute (clinical trials database)

Glossary

Signal-sending cell

The cell on which the ligand is expressed. Canonical Notch signalling is seen as a uni-directional signalling pathway in which the ligand is expressed on one cell, which 'sends' the signal, and the receptor is expressed on a contacting cell, which 'receives' the signal.

Signal-receiving cell

The cell on which the receptor is expressed. Canonical Notch signalling is seen as a uni-directional signalling pathway in which the ligand is expressed on one cell, which 'sends' the signal, and the receptor is expressed on a contacting cell, which 'receives' the signal.

Epithelial to mesenchymal transition

(EMT). A phenotypic change in cells where they lose epithelial and/or adhesive properties and become more motile. This is often associated with the onset of cancer metastasis.

Wolff–Parkinson–White syndrome

A heart condition in which aberrant conductance between atria and ventricles leads to an increased heart rate.

Maximum tolerated dose

The highest dose of a treatment that will produce the desired effect without causing unacceptable toxicity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andersson, E., Lendahl, U. Therapeutic modulation of Notch signalling — are we there yet?. Nat Rev Drug Discov 13, 357–378 (2014). https://doi.org/10.1038/nrd4252

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4252

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer