Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug development in the era of precision medicine

Key Points

  • Prior efforts using genomics to inform drug discovery (that is, expressed sequencing tag profiling and genome-wide association studies) have yielded an array of potential targets but have encountered difficulty in translating these discoveries into clinically efficacious drugs.

  • Precision medicine marks a new relationship between genomics and drug discovery, one that provides both insights into the mechanisms and potential treatment options of a single patient's disease.

  • Oncology has been the leader in the field of precision medicine, with a multitude of successful examples of targeted treatments and immunotherapies available for a wide range of cancers.

  • Precision therapies for Mendelian diseases, such as those that replace deficient proteins, directly target the dysfunctional protein or disease-associated pathway or influence expression of disease-relevant genes, and are clinically available for a number of conditions, such as lysosomal storage disorders, cystic fibrosis, tuberous sclerosis and spinal muscular atrophy.

  • With various reliable model systems and a multitude of drug screening platforms, epilepsy is well positioned to serve as a model for precision medicine in highly genetic conditions.

  • Although it is currently uncertain how generalizable genomic precision medicine approaches will be for all diseases, we imagine that some therapeutics that were developed for defined genetic conditions will also be efficacious in individuals with mechanistically related disease that do not necessarily carry the same genetic drivers.

Abstract

For the past three decades, the use of genomics to inform drug discovery and development pipelines has generated both excitement and scepticism. Although earlier efforts successfully identified some new drug targets, the overall clinical efficacy of developed drugs has remained unimpressive, owing in large part to the heterogeneous causes of disease. Recent technological and analytical advances in genomics, however, have now made it possible to rapidly identify and interpret the genetic variation underlying a single patient's disease, thereby providing a window into patient-specific mechanisms that cause or contribute to disease, which could ultimately enable the 'precise' targeting of these mechanisms. Here, we first examine and highlight the successes and limitations of the earlier phases of genomics in drug discovery and development. We then review the current major efforts in precision medicine and discuss the potential broader utility of mechanistically guided treatments going forward.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Precision therapy approaches in oncology.
Figure 2: Precision medicine for highly genetic diseases — epileptic encephalopathy as a model.

Similar content being viewed by others

References

  1. National Research Council (US) Committee on A Framework for Developing a New Taxonomy of Disease. Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease (National Academies Press, 2011).

  2. Raviña Rubira, E. The Evolution of Drug Discovery: From Traditional Medicines to Modern Drugs. (Wiley-VCH, 2011).

    Google Scholar 

  3. Zanders, E. D. The Science and Business of Drug Discovery. (Springer, 2011).

    Google Scholar 

  4. Hopkins, M. M., Martin, P. A., Nightingale, P., Kraft, A. & Mahdi, S. The myth of the biotech revolution: an assessment of technological, clinical and organisational change. Res. Policy 36, 566–589 (2007).

    Google Scholar 

  5. Nightingale, P. & Madhi, S. in Knowledge Accumulation and Industry Evolution: The Case of Pharma-Biotech (eds Mazzucatu, M. & Dosi, G.) 73–111 (Cambridge Univ. Press, 2006).

    Google Scholar 

  6. Martin, P., Hopkins, M., Nightingale, P. & Kraft, A. in The Handbook of Genetics & Society: Mapping the New Genomic Era (eds Atkinson, P., Glasner, P. & Lock, M.) 145–162 (Routledge, 2009).

    Google Scholar 

  7. Nightingale, P. Economies of scale in experimentation: knowledge and technology in pharmaceutical R&D. Ind. Corp. Change 9, 315–359 (2000).

    Google Scholar 

  8. Debouck, C. & Metcalf, B. The impact of genomics on drug discovery. Annu. Rev. Pharmacol. Toxicol. 40, 193–207 (2000).

    CAS  PubMed  Google Scholar 

  9. Adams, M. D. et al. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656 (1991).

    CAS  PubMed  Google Scholar 

  10. Adams, M. D. et al. Initial assessment of human gene diversity and expression patterns based upon 83 million nucleotides of cDNA sequence. Nature 377, 3–174 (1995).

    CAS  PubMed  Google Scholar 

  11. Haseltine, W. A. Discovering genes for new medicines. Sci. Am. 276, 92–97 (1997).

    CAS  PubMed  Google Scholar 

  12. Haseltine, W. A. Genomics and drug discovery. J. Am. Acad. Dermatol. 45, 473–475 (2001).

    CAS  PubMed  Google Scholar 

  13. Gershon, D. Smithkline backs sequencing company. Nature 363, 387 (1993).

    CAS  PubMed  Google Scholar 

  14. Ma, P. & Zemmel, R. Value of novelty? Nat. Rev. Drug Discov. 1, 571–572 (2002).

    CAS  PubMed  Google Scholar 

  15. Hopkins, M., Kraft, A., Martin, P., Nightingale, P. & Madhi, S. in Comprehensive Medicinal Chemistry II (eds Taylor, J. B. & Triggle, D. J.) 591–613 (Elsevier, 2007).

    Google Scholar 

  16. Cook, D. et al. Lessons learned from the fate of AstraZeneca's drug pipeline: a five-dimensional framework. Nat. Rev. Drug Discov. 13, 419–431 (2014).

    CAS  PubMed  Google Scholar 

  17. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    CAS  PubMed  Google Scholar 

  18. Manolio, T. A., Brooks, L. D. & Collins, F. S. A. HapMap harvest of insights into the genetics of common disease. J. Clin. Invest. 118, 1590–1605 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kingsmore, S. F., Lindquist, I. E., Mudge, J., Gessler, D. D. & Beavis, W. D. Genome-wide association studies: progress and potential for drug discovery and development. Nat. Rev. Drug Discov. 7, 221–230 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Lopes, M. C., Zeggini, E. & Panoutsopoulou, K. Do genome-wide association scans have potential for translation? Clin. Chem. Lab. Med. 50, 255–260 (2011).

    PubMed  Google Scholar 

  21. Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, Y. et al. A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet. 4, e1000041 (2008).

    PubMed  PubMed Central  Google Scholar 

  24. Australo-Anglo-American Spondyloarthritis Consortium (TASC) et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat. Genet. 42, 123–127 (2010).

  25. Gaffen, S. L., Jain, R., Garg, A. V. & Cua, D. J. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat. Rev. Immunol. 14, 585–600 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Feagan, B. G. et al. Ustekinumab as induction and maintenance therapy for Crohn's disease. N. Engl. J. Med. 375, 1946–1960 (2016).

    CAS  PubMed  Google Scholar 

  27. Krueger, J. G. et al. Anti–IL-23A mAb BI 655066 for treatment of moderate-to-severe psoriasis: safety, efficacy, pharmacokinetics, and biomarker results of a single-rising-dose, randomized, double-blind, placebo-controlled trial. J. Allergy Clin. Immunol. 136, 116–124.e7 (2015).

    CAS  PubMed  Google Scholar 

  28. Feagan, B. G. et al. Induction therapy with the selective interleukin-23 inhibitor risankizumab in patients with moderate-to-severe Crohn's disease: a randomised, double-blind, placebo-controlled phase 2 study. Lancet 389, 1699–1709 (2017).

    CAS  PubMed  Google Scholar 

  29. Kopp, T. et al. Clinical improvement in psoriasis with specific targeting of interleukin-23. Nature 521, 222–226 (2015).

    CAS  PubMed  Google Scholar 

  30. Poddubnyy, D., Hermann, K.-G. A., Callhoff, J., Listing, J. & Sieper, J. Ustekinumab for the treatment of patients with active ankylosing spondylitis: results of a 28-week, prospective, open-label, proof-of-concept study (TOPAS). Ann. Rheum. Dis. 73, 817–823 (2014).

    CAS  PubMed  Google Scholar 

  31. Fragoulis, G. E., Siebert, S. & McInnes, I. B. Therapeutic targeting of IL-17 and IL-23 cytokines in immune-mediated diseases. Annu. Rev. Med. 67, 337–353 (2016).

    CAS  PubMed  Google Scholar 

  32. Frayling, T. M. et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889–894 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dina, C. et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 39, 724–726 (2007).

    CAS  PubMed  Google Scholar 

  34. Scuteri, A. et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 3, e115 (2007).

    PubMed  PubMed Central  Google Scholar 

  35. Tung, Y. C. L., Yeo, G. S. H., O'Rahilly, S. & Coll, A. P. Obesity and FTO: changing focus at a complex locus. Cell Metab. 20, 710–718 (2014).

    CAS  PubMed  Google Scholar 

  36. Loos, R. J. F. & Yeo, G. S. H. The bigger picture of FTO: the first GWAS-identified obesity gene. Nat. Rev. Endocrinol. 10, 51–61 (2014).

    CAS  PubMed  Google Scholar 

  37. Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017). This paper proposes an 'omnigenic' model of complex disease and trait inheritance, arguing in favour of a few 'core' disease variants, with the bulk of heritability caused by an immense amount of 'peripheral' variants expressed in disease-relevant cell types.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Goldstein, D. B. Common genetic variation and human traits. N. Engl. J. Med. 360, 1696–1698 (2009).

    CAS  PubMed  Google Scholar 

  41. Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 12, 581–594 (2013).

    CAS  PubMed  Google Scholar 

  42. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34, 154–156 (2003).

    CAS  PubMed  Google Scholar 

  43. Fasano, T. et al. A novel loss of function mutation of PCSK9 gene in white subjects with low-plasma low-density lipoprotein cholesterol. Arterioscler. Thromb. Vasc. Biol. 27, 677–681 (2007).

    CAS  PubMed  Google Scholar 

  44. Cohen, J. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat. Genet. 37, 161–165 (2005).

    CAS  PubMed  Google Scholar 

  45. Cohen, J. C., Boerwinkle, E., Mosley, T. H. & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006).

    CAS  PubMed  Google Scholar 

  46. Kotowski, I. K. et al. A spectrum of PCSK9 alleles contributes to plasma levels of low-density lipoprotein cholesterol. Am. J. Hum. Genet. 78, 410–422 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang, D.-W. et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem. 282, 18602–18612 (2007).

    CAS  PubMed  Google Scholar 

  48. Poirier, S. et al. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol. Chem. 283, 2363–2372 (2008).

    CAS  PubMed  Google Scholar 

  49. Dadu, R. T. & Ballantyne, C. M. Lipid lowering with PCSK9 inhibitors. Nat. Rev. Cardiol. 11, 563–575 (2014).

    CAS  PubMed  Google Scholar 

  50. Sabatine, M. S. et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 376, 1713–1722 (2017).

    CAS  PubMed  Google Scholar 

  51. Kamb, A., Harper, S. & Stefansson, K. Human genetics as a foundation for innovative drug development. Nat. Biotechnol. 31, 975–978 (2013).

    CAS  PubMed  Google Scholar 

  52. Eisenstein, M. Amgen and Regeneron push for a genetic renaissance in drug discovery. Nat. Biotechnol. 32, 208–209 (2014).

    CAS  PubMed  Google Scholar 

  53. Sulem, P. et al. Identification of a large set of rare complete human knockouts. Nat. Genet. 47, 448–452 (2015).

    CAS  PubMed  Google Scholar 

  54. Dewey, F. E. et al. Inactivating variants in ANGPTL4 and risk of coronary artery disease. N. Engl. J. Med. 374, 1123–1133 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Silver, R. T. et al. An evidence-based analysis of the effect of busulfan, hydroxyurea, interferon, and allogeneic bone marrow transplantation in treating the chronic phase of chronic myeloid leukemia: developed for the American Society of Hematology: presented in part at the Education Session of the American Society of Hematology, December 5, 1998, Miami Beach, FL. Blood 94, 1517–1536 (1999).

    CAS  PubMed  Google Scholar 

  56. Stegmeier, F., Warmuth, M., Sellers, W. R. & Dorsch, M. Targeted cancer therapies in the twenty-first century: lessons from imatinib. Clin. Pharmacol. Ther. 87, 543–552 (2010).

    CAS  PubMed  Google Scholar 

  57. Druker, B. J. Translation of the Philadelphia chromosome into therapy for CML. Blood 112, 4808–4817 (2008).

    CAS  PubMed  Google Scholar 

  58. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002).

    CAS  PubMed  Google Scholar 

  59. Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med. 344, 783–792 (2001).

    CAS  PubMed  Google Scholar 

  60. Hauschild, A. et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380, 358–365 (2012).

    CAS  PubMed  Google Scholar 

  61. McArthur, G. A. et al. Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. Lancet Oncol. 15, 323–332 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Maemondo, M. et al. Gefitinib or chemotherapy for non–small-cell lung cancer with mutated EGFR. N. Engl. J. Med. 362, 2380–2388 (2010).

    CAS  PubMed  Google Scholar 

  63. Zhou, C. et al. Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol. 12, 735–742 (2011).

    CAS  PubMed  Google Scholar 

  64. Mitsudomi, T. et al. Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol. 11, 121–128 (2010).

    CAS  PubMed  Google Scholar 

  65. Rosell, R. et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 13, 239–246 (2012).

    CAS  PubMed  Google Scholar 

  66. Sequist, L. V. et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. 31, 3327–3334 (2013).

    CAS  PubMed  Google Scholar 

  67. Wu, Y.-L. et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial. Lancet Oncol. 15, 213–222 (2014).

    CAS  PubMed  Google Scholar 

  68. Tewari, K. S., Eskander, R. N. & Monk, B. J. Development of olaparib for BRCA-deficient recurrent epithelial ovarian cancer. Clin. Cancer Res. 21, 3829–3835 (2015).

    CAS  PubMed  Google Scholar 

  69. Lord, C. J. & Ashworth, A. PARP inhibitors: synthetic lethality in the clinic. Science 355, 1152–1158 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pujade-Lauraine, E. et al. Treatment with olaparib monotherapy in the maintenance setting significantly improves progression-free survival in patients with platinum-sensitive relapsed ovarian cancer: results from the phase III SOLO2 study. Gynecol. Oncol. 145, 219–220 (2017).

    Google Scholar 

  71. Kaufman, B. et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J. Clin. Oncol. 33, 244–250 (2015).

    CAS  PubMed  Google Scholar 

  72. Mirza, M. R. et al. Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N. Engl. J. Med. 375, 2154–2164 (2016).

    CAS  PubMed  Google Scholar 

  73. Yver, A. Osimertinib (AZD9291) — a science-driven, collaborative approach to rapid drug design and development. Ann. Oncol. 27, 1165–1170 (2016).

    CAS  PubMed  Google Scholar 

  74. Yang, Y. Cancer immunotherapy: harnessing the immune system to battle cancer. J. Clin. Invest. 125, 3335–3337 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Farkona, S., Diamandis, E. P. & Blasutig, I. M. Cancer immunotherapy: the beginning of the end of cancer? BMC Med. 14, 73 (2016).

    PubMed  PubMed Central  Google Scholar 

  76. Mullard, A. The cancer vaccine resurgence. Nat. Rev. Drug Discov. 15, 663–665 (2016).

    CAS  PubMed  Google Scholar 

  77. van Rooij, N. et al. Tumor exome analysis reveals neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J. Clin. Oncol. 31, e439–e442 (2013). This is the first report of T cell reactivity to tumour-specific neoantigens in human patients.

    PubMed  Google Scholar 

  78. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Linnemann, C. et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat. Med. 21, 81–85 (2014).

    PubMed  Google Scholar 

  80. Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    CAS  PubMed  Google Scholar 

  82. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Dudley, M. E. et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23, 2346–2357 (2005).

    CAS  PubMed  Google Scholar 

  84. Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 298, 850–854 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lu, Y.-C. et al. Mutated PPP1R3B is recognized by T cells used to treat a melanoma patient who experienced a durable complete tumor regression. J. Immunol. 190, 6034–6042 (2013).

    CAS  PubMed  Google Scholar 

  86. Tran, E. et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 344, 641–645 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sadelain, M. CAR therapy: the CD19 paradigm. J. Clin. Invest. 125, 3392–3400 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. Sharma, P. & Allison, J. P. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 161, 205–214 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

    PubMed  Google Scholar 

  90. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Powles, T. et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 515, 558–562 (2014).

    CAS  PubMed  Google Scholar 

  92. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N. Engl. J. Med. 372, 311–319 (2015).

    PubMed  Google Scholar 

  94. Seiwert, T. Y. et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 17, 956–965 (2016).

    CAS  PubMed  Google Scholar 

  95. Schadendorf, D. et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J. Clin. Oncol. 33, 1889–1894 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Herbst, R. S. et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet 387, 1540–1550 (2016).

    CAS  PubMed  Google Scholar 

  97. Borghaei, H. et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N. Engl. J. Med. 373, 1627–1639 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Rebelatto, M. C. et al. Development of a programmed cell death ligand-1 immunohistochemical assay validated for analysis of non-small cell lung cancer and head and neck squamous cell carcinoma. Diagn. Pathol. 11, 95 (2016).

    PubMed  PubMed Central  Google Scholar 

  99. Massard, C. et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J. Clin. Oncol. 34, 3119–3125 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Rosenberg, J. E. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387, 1909–1920 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Vanneman, M. & Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer 12, 237–251 (2012). This is an insightful review that highlights the opportunities for and potential clinical benefits of combined targeted therapies and immunotherapies in oncology precision medicine.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Weber, J. S. et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 16, 375–384 (2015).

    CAS  PubMed  Google Scholar 

  103. Hammers, H. J. et al. Phase I study of nivolumab in combination with ipilimumab in metastatic renal cell carcinoma (mRCC). J. Clin. Oncol. 32, 4504–4504 (2014).

    Google Scholar 

  104. Rakhra, K. et al. CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18, 485–498 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hughes, P. E., Caenepeel, S. & Wu, L. C. Targeted therapy and checkpoint immunotherapy combinations for the treatment of cancer. Trends Immunol. 37, 462–476 (2016).

    CAS  PubMed  Google Scholar 

  106. Renfro, L. A. & Sargent, D. J. Statistical controversies in clinical research: basket trials, umbrella trials, and other master protocols: a review and examples. Ann. Oncol. 28, 34–43 (2017).

    CAS  PubMed  Google Scholar 

  107. Schork, N. J. Personalized medicine: time for one-person trials. Nature 520, 609–611 (2015).

    CAS  PubMed  Google Scholar 

  108. Rubin, R. A. Precision medicine approach to clinical trials. JAMA 316, 1953–1955 (2016).

    PubMed  Google Scholar 

  109. Alvarez, M. J. et al. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat. Genet. 48, 838–847 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Kornfeld, S. Lysosomal enzyme targeting. Biochem. Soc. Trans. 18, 367–374 (1990).

    CAS  PubMed  Google Scholar 

  111. Desnick, R. J. & Schuchman, E. H. Enzyme replacement and enhancement therapies: lessons from lysosomal disorders. Nat. Rev. Genet. 3, 954–966 (2002).

    CAS  PubMed  Google Scholar 

  112. Van Goor, F. et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc. Natl Acad. Sci. USA 106, 18825–18830 (2009). This study reports the in vitro mechanism of the now-approved cystic fibrosis drug ivacaftor (VX-770) that selectively targets the molecular defect underlying the G551D mutation in CFTR.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Germain, D. P. et al. Treatment of Fabry's disease with the pharmacologic chaperone migalastat. N. Engl. J. Med. 375, 545–555 (2016).

    CAS  PubMed  Google Scholar 

  114. Hughes, D. A. et al. Oral pharmacological chaperone migalastat compared with enzyme replacement therapy in Fabry disease: 18-month results from the randomised phase III ATTRACT study. J. Med. Genet. 54, 288–296 (2016).

    PubMed  Google Scholar 

  115. French, J. A. et al. Adjunctive everolimus therapy for treatment-resistant focal-onset seizures associated with tuberous sclerosis (EXIST-3): a phase 3, randomised, double-blind, placebo-controlled study. Lancet 388, 2153–2163 (2016). This study reports clinical trial data for the use of the mTOR inhibitor everolimus in the treatment of TSC-related seizures, thus serving as an example of pathway-based treatment.

    CAS  PubMed  Google Scholar 

  116. Hua, Y., Vickers, T. A., Okunola, H. L., Bennett, C. F. & Krainer, A. R. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am. J. Hum. Genet. 82, 834–848 (2008). This study describes the use of an ASO tiling method to interfere with the splicing silencers heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) and HNRNPA2 as a therapeutic mechanism for SMA and provides an example of how drugs may be designed to exert effects at the level of gene expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Corey, D. R. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat. Neurosci. 20, 497–499 (2017).

    CAS  PubMed  Google Scholar 

  118. Brodie, M. J., Barry, S. J. E., Bamagous, G. A., Norrie, J. D. & Kwan, P. Patterns of treatment response in newly diagnosed epilepsy. Neurology 78, 1548–1554 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Sankaraneni, R. & Lachhwani, D. Antiepileptic drugs — a review. Pediatr. Ann. 44, e36–e42 (2015).

    PubMed  Google Scholar 

  120. Epi4K Consortium et al. De novo mutations in epileptic encephalopathies. Nature 501, 217–221 (2013).

  121. Epilepsy Phenome/Genome Project, Epi4K Consortium & EuroEPINOMICS-RES Consortium. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am. J. Hum. Genet. 100, 179 (2017).

  122. EpiPM Consortium. A roadmap for precision medicine in the epilepsies. Lancet Neurol. 14, 1219–1228 (2015). This article provides a conceptual framework for developing and implementing targeted therapies for epilepsy.

  123. Dhindsa, R. S. & Goldstein, D. B. Genetic discoveries drive molecular analyses and targeted therapeutic options in the epilepsies. Curr. Neurol. Neurosci. Rep. 15, 70 (2015).

    PubMed  Google Scholar 

  124. Yang, B. et al. Pharmacological activation and inhibition of Slack (Slo2.2) channels. Neuropharmacology 51, 896–906 (2006).

    CAS  PubMed  Google Scholar 

  125. Milligan, C. J. et al. KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine. Ann. Neurol. 75, 581–590 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Bearden, D. et al. Targeted treatment of migrating partial seizures of infancy with quinidine. Ann. Neurol. 76, 457–461 (2014).

    CAS  PubMed  Google Scholar 

  127. Mikati, M. A. et al. Quinidine in the treatment of KCNT1-positive epilepsies. Ann. Neurol. 78, 995–999 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Pierson, T. M. et al. GRIN2A mutation and early-onset epileptic encephalopathy: personalized therapy with memantine. Ann. Clin. Transl Neurol. 1, 190–198 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, D. et al. GRIN2D recurrent de novo dominant mutation causes a severe epileptic encephalopathy treatable with NMDA receptor channel blockers. Am. J. Hum. Genet. 99, 802–816 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang, H. S. et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282, 1890–1893 (1998).

    CAS  PubMed  Google Scholar 

  131. Orhan, G. et al. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann. Neurol. 75, 382–394 (2014).

    CAS  PubMed  Google Scholar 

  132. Ihara, Y. et al. Retigabine, a Kv7.2/Kv7.3-channel opener, attenuates drug-induced seizures in knock-in mice harboring Kcnq2 mutations. PLoS ONE 11, e0150095 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. Wuttke, T. V. et al. Peripheral nerve hyperexcitability due to dominant-negative KCNQ2 mutations. Neurology 69, 2045–2053 (2007).

    CAS  PubMed  Google Scholar 

  134. Millichap, J. J. et al. KCNQ2 encephalopathy: features, mutational hot spots, and ezogabine treatment of 11 patients. Neurol. Genet. 2, e96 (2016).

    PubMed  PubMed Central  Google Scholar 

  135. International League Against Epilepsy Consortium on Complex Epilepsies. Genetic determinants of common epilepsies: a meta-analysis of genome-wide association studies. Lancet Neurol. 13, 893–903 (2014). This meta-analysis implicates mutations in genes initially known to cause the severe, monogenic epilepsies in the more common generalized and focal epilepsies, thus serving as an example of the allelic and corresponding phenotypic heterogeneity that may render certain targeted treatments applicable to patients carrying a range of mutations in the same gene.

  136. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Zaidi, S. et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 498, 220–223 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Al Turki, S. et al. Rare variants in NR2F2 cause congenital heart defects in humans. Am. J. Hum. Genet. 94, 574–585 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Petrovski, S. et al. An exome sequencing study to assess the role of rare genetic variation in pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 196, 82–93 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Asgari, S. et al. Exome sequencing reveals primary immunodeficiencies in children with community-acquired Pseudomonas aeruginosa sepsis. Front. Immunol. 7, 357 (2016).

    PubMed  PubMed Central  Google Scholar 

  142. Maffucci, P. et al. Genetic diagnosis using whole exome sequencing in common variable immunodeficiency. Front. Immunol. 7, 220 (2016).

    PubMed  PubMed Central  Google Scholar 

  143. Dickinson, R. E. et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood 118, 2656–2658 (2011).

    CAS  PubMed  Google Scholar 

  144. Marouli, E. et al. Rare and low-frequency coding variants alter human adult height. Nature 542, 186–190 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Surakka, I. et al. The impact of low-frequency and rare variants on lipid levels. Nat. Genet. 47, 589–597 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Surendran, P. et al. Trans-ancestry meta-analyses identify rare and common variants associated with blood pressure and hypertension. Nat. Genet. 48, 1151–1161 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Weishaupt, J. H., Hyman, T. & Dikic, I. Common molecular pathways in amyotrophic lateral sclerosis and frontotemporal dementia. Trends Mol. Med. 22, 769–783 (2016). This review summarizes findings from amyotrophic lateral sclerosis genetic studies and the convergence of implicated genes into functional pathways, thus underscoring the potential utility of these disease-associated pathways as therapeutic targets.

    CAS  PubMed  Google Scholar 

  148. Oza, A. M. et al. Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: a randomised phase 2 trial. Lancet Oncol. 16, 87–97 (2015).

    CAS  PubMed  Google Scholar 

  149. Brunkow, M. E. et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am. J. Hum. Genet. 68, 577–589 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Winkler, D. G. et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 22, 6267–6276 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Padhi, D., Jang, G., Stouch, B., Fang, L. & Posvar, E. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J. Bone Miner. Res. 26, 19–26 (2011).

    CAS  PubMed  Google Scholar 

  152. McClung, M. R. et al. Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 370, 412–420 (2014).

    CAS  PubMed  Google Scholar 

  153. Cosman, F. et al. Romosozumab treatment in postmenopausal women with osteoporosis. N. Engl. J. Med. 375, 1532–1543 (2016).

    CAS  PubMed  Google Scholar 

  154. Yang, Y. et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J. Med. Genet. 41, 171–174 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Fertleman, C. R. et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52, 767–774 (2006).

    CAS  PubMed  Google Scholar 

  156. Cox, J. J. et al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444, 894–898 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Reimann, F. et al. Pain perception is altered by a nucleotide polymorphism in SCN9A. Proc. Natl Acad. Sci. USA 107, 5148–5153 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Duan, G. et al. A single-nucleotide polymorphism in SCN9A may decrease postoperative pain sensitivity in the general population. Anesthesiology 118, 436–442 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Carulli, M. Lalioti and C. Bostick for their valuable feedback on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Goldstein.

Ethics declarations

Competing interests

D.G. is a founder of and holds equity in Pairnomix and Praxis, serves as a consultant to AstraZeneca and has received research support from Janssen, Gilead, Biogen, AstraZeneca and UCB. A.P. is a paid employee of and holds stock in AstraZeneca.

Related links

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dugger, S., Platt, A. & Goldstein, D. Drug development in the era of precision medicine. Nat Rev Drug Discov 17, 183–196 (2018). https://doi.org/10.1038/nrd.2017.226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2017.226

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research