Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

JAK inhibition as a therapeutic strategy for immune and inflammatory diseases

A Corrigendum to this article was published on 28 December 2017

This article has been updated

Key Points

  • Despite their success, conventional and biologic disease-modifying antirheumatic drugs are not effective in all patients.

  • First-generation Janus kinase (JAK) inhibitors, or jakinibs, are effective for rheumatoid arthritis and in a number of other autoimmune conditions.

  • Next-generation selective jakinibs are being developed and are effective in rheumatoid arthritis, inflammatory bowel disease and other autoimmune conditions.

  • First-generation and second-generation jakinibs are currently being investigated for a number of new indications.

  • Many of the adverse effects of jakinibs can be linked to the action of the cytokines that are blocked.

  • Topical jakinibs represent an exciting new class of agents that may preserve therapeutic efficacy while eliminating adverse effects that result from systemic JAK inhibition.

Abstract

The discovery of cytokines as key drivers of immune-mediated diseases has spurred efforts to target their associated signalling pathways. Janus kinases (JAKs) are essential signalling mediators downstream of many pro-inflammatory cytokines, and small-molecule inhibitors of JAKs (jakinibs) have gained traction as safe and efficacious options for the treatment of inflammation-driven pathologies such as rheumatoid arthritis, psoriasis and inflammatory bowel disease. Building on the clinical success of first-generation jakinibs, second-generation compounds that claim to be more selective are currently undergoing development and proceeding to clinical trials. However, important questions remain about the advantages and limitations of improved JAK selectivity, optimal routes and dosing regimens and how best to identify patients who will benefit from jakinibs. This Review discusses the biology of jakinibs from a translational perspective, focusing on recent insights from clinical trials, the development of novel agents and the use of jakinibs in a spectrum of immune and inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signalling by type I and type II cytokine receptors.
Figure 2: Effects of targeting different JAKs.
Figure 3: Chemical structure and attributes of various jakinibs.

Similar content being viewed by others

Change history

  • 28 December 2017

    In the version of this article that was originally published, there was an error in Figure 3 on page 847. In this figure, the structure attributed to the compound BMS-986165 is incorrect and the correct structure for this compound has not yet been disclosed. This error has now been corrected in the online version of the article, and the structure of SAR-20347 has been added instead. We apologize for any inconvenience that this error may have caused.

References

  1. Schwartz, D. M., Bonelli, M., Gadina, M. & O'Shea, J. J. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat. Rev. Rheumatol. 12, 25–36 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Singh, J. A. et al. Biologics or tofacitinib for rheumatoid arthritis in incomplete responders to methotrexate or other traditional disease-modifying anti-rheumatic drugs: a systematic review and network meta-analysis. Cochrane Database Syst. Rev. 13, CD012183 (2016).

    Google Scholar 

  3. Calabrese, L. H. & Rose-John, S. IL-6 biology: implications for clinical targeting in rheumatic disease. Nat. Rev. Rheumatol. 10, 720–727 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Pepys, M. B. & Hirschfield, G. M. C-Reactive protein: a critical update. J. Clin. Invest. 111, 1805–1812 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feagan, B. G. et al. Ustekinumab as induction and maintenance therapy for Crohn's disease. N. Engl. J. Med. 375, 1946–1960 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Ortega, H. G. et al. Mepolizumab treatment in patients with severe eosinophilic asthma. N. Engl. J. Med. 371, 1198–1207 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Hanania, N. A. et al. Efficacy and safety of lebrikizumab in patients with uncontrolled asthma (LAVOLTA I and LAVOLTA II): replicate, phase 3, randomised, double-blind, placebo-controlled trials. Lancet Respir. Med. 4, 781–796 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. Wenzel, S. et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting β2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet 388, 31–44 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. O'Shea, J. J., Holland, S. M. & Staudt, L. M. JAKs and STATs in immunity, immunodeficiency, and cancer. N. Engl. J. Med. 368, 161–170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. O'Shea, J. J. et al. The JAK–STAT pathway: impact on human disease and therapeutic intervention. Annu. Rev. Med. 66, 311–328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ross, S. H. et al. Phosphoproteomic analyses of interleukin 2 signaling reveal integrated JAK kinase-dependent and -independent networks in CD8+ T cells. Immunity 45, 685–700 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Macchi, P. et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 377, 65–68 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Russell, S. M. et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 270, 797–800 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Druker, B. J. et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344, 1031–1037 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Rask-Andersen, M., Zhang, J., Fabbro, D. & Schioth, H. B. Advances in kinase targeting: current clinical use and clinical trials. Trends Pharmacol. Sci. 35, 604–620 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Herrera, A. F. & Jacobsen, E. D. Ibrutinib for the treatment of mantle cell lymphoma. Clin. Cancer Res. 20, 5365–5371 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Lippert, E. et al. The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera. Blood 108, 1865–1867 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Verstovsek, S. et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N. Engl. J. Med. 366, 799–807 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Harrison, C. et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N. Engl. J. Med. 366, 787–798 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Waldmann, T. A. & Chen, J. Disorders of the JAK/STAT pathway in T cell lymphoma pathogenesis: implications for immunotherapy. Annu. Rev. Immunol. 35, 533–550 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kudlacz, E. et al. The novel JAK-3 inhibitor CP-690550 is a potent immunosuppressive agent in various murine models. Am. J. Transplant. 4, 51–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Ghoreschi, K. et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J. Immunol. 186, 4234–4243 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Milici, A. J., Kudlacz, E. M., Audoly, L., Zwillich, S. & Changelian, P. Cartilage preservation by inhibition of Janus kinase 3 in two rodent models of rheumatoid arthritis. Arthritis Res. Ther. 10, R14 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, E. B. et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N. Engl. J. Med. 370, 2377–2386 (2014). This study establishes the superiority of tofacitinib to methotrexate in the treatment of rheumatoid arthritis.

    Article  CAS  PubMed  Google Scholar 

  25. Burmester, G. R. et al. Tofacitinib (CP-690,550) in combination with methotrexate in patients with active rheumatoid arthritis with an inadequate response to tumour necrosis factor inhibitors: a randomised phase 3 trial. Lancet 381, 451–460 (2013). This study establishes the efficacy of tofacitinib in patients who had failed to respond to two or more biological agents.

    Article  CAS  PubMed  Google Scholar 

  26. van Vollenhoven, R. F. et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N. Engl. J. Med. 367, 508–519 (2012). This study finds tofacitinib to be non-inferior to adalimumab as combination treatment with methotrexate in patients with continued disease activity on methotrexate. It establishes the equivalence of jakinibs to standard-of-care treatments.

    Article  CAS  PubMed  Google Scholar 

  27. Lee, E. B. et al. Radiographic, clinical and functional comparison of tofacitinib monotherapy versus methotrexate in methotrexate-nai¨ve patients with rheumatoid arthritis [abstract]. Arthritis Rheumatol. 64 (Suppl. 10), 2486 (2012).

    Google Scholar 

  28. Kremer, J. M. et al. Tofacitinib (cp-690,550), an oral JAK inhibitor, in combination with traditional DMARDs: phase 3 study in patients with active rheumatoid arthritis with inadequate response to DMARDs [abstract]. Ann. Rheum. Dis. 70 (Suppl. 3), 170 (2011).

    Google Scholar 

  29. Fleischmann, R. M. et al. Efficacy of tofacitinib monotherapy in methotrexate-naive patients with early or established rheumatoid arthritis. RMD Open 2, e000262 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367, 495–507 (2012). This phase III trial of tofacitinib in rheumatoid arthritis found tofacitinib to be effective as monotherapy.

    Article  CAS  PubMed  Google Scholar 

  31. He, Y. et al. Efficacy and safety of tofacitinib in the treatment of rheumatoid arthritis: a systematic review and meta-analysis. BMC Musculoskelet. Disord. 14, 298 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kremer, J. et al. Tofacitinib in combination with nonbiologic disease-modifying antirheumatic drugs in patients with active rheumatoid arthritis: a randomized trial. Ann. Intern. Med. 159, 253–261 (2013).

    Article  PubMed  Google Scholar 

  33. van der Heijde, D. et al. Tofacitinib (CP-690,550) in patients with rheumatoid arthritis receiving methotrexate: twelve-month data from a twenty-four-month phase III randomized radiographic study. Arthritis Rheum. 65, 559–570 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Conaghan, P. G. et al. Comparing the effects of tofacitinib, methotrexate and the combination, on bone marrow oedema, synovitis and bone erosion in methotrexate-naive, early active rheumatoid arthritis: results of an exploratory randomised MRI study incorporating semiquantitative and quantitative techniques. Ann. Rheum. Dis. 75, 1024–1033 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Strand, V. et al. Tofacitinib with methotrexate in third-line treatment of patients with active rheumatoid arthritis: patient-reported outcomes from a phase III trial. Arthritis Care Res. 67, 475–483 (2015).

    Article  CAS  Google Scholar 

  36. Charles-Schoeman, C. et al. Efficacy and safety of tofacitinib following inadequate response to conventional synthetic or biological disease-modifying antirheumatic drugs. Ann. Rheum. Dis. 75, 1293–1301 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Landewé, R. B. et al. Is radiographic progression in modern rheumatoid arthritis trials still a robust outcome? Experience from tofacitinib clinical trials. Arthritis Res. Ther. 18, 212 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Traynor, K. FDA approves tofacitinib for rheumatoid arthritis. Am. J. Health Syst. Pharm. 69, 2120 (2012).

    PubMed  Google Scholar 

  39. Yamanaka, H. et al. Tofacitinib, an oral Janus kinase inhibitor, as monotherapy or with background methotrexate, in Japanese patients with rheumatoid arthritis: an open-label, long-term extension study. Arthritis Res. Ther. 18, 34 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wollenhaupt, J. et al. Safety and efficacy of tofacitinib, an oral janus kinase inhibitor, for the treatment of rheumatoid arthritis in open-label, longterm extension studies. J. Rheumatol 41, 837–852 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Fleischmann, R. et al. Efficacy and safety of tofacitinib in patients with active rheumatoid arthritis: review of key phase 2 studies. Int. J. Rheum. Dis. 19, 1216–1225 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Smolen, J. S. et al. Remission rates with tofacitinib treatment in rheumatoid arthritis: a comparison of various remission criteria. Arthritis Rheumatol. 69, 728–734 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, J., Devenport, J., Low, J. M., Yu, D. & Hitraya, E. Relationship between baseline and early changes in C-reactive protein and interleukin-6 levels and clinical response to tocilizumab in rheumatoid arthritis. Arthritis Care Res. 68, 882–885 (2016).

    Article  CAS  Google Scholar 

  44. Strand, V. et al. Tofacitinib versus methotrexate in rheumatoid arthritis: patient-reported outcomes from the randomised phase III ORAL Start trial. RMD Open 2, e000308 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Strand, V. et al. Effects of tofacitinib monotherapy on patient-reported outcomes in a randomized phase 3 study of patients with active rheumatoid arthritis and inadequate responses to DMARDs. Arthritis Res. Ther. 17, 307 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lamba, M. et al. Extended-release once-daily formulation of tofacitinib: evaluation of pharmacokinetics compared with immediate-release tofacitinib and impact of food. J. Clin. Pharmacol. 56, 1362–1371 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shi, J. G. et al. The pharmacokinetics, pharmacodynamics, and safety of baricitinib, an oral JAK 1/2 inhibitor, in healthy volunteers. J. Clin. Pharmacol. 54, 1354–1361 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Dougados, M. et al. Baricitinib in patients with inadequate response or intolerance to conventional synthetic DMARDs: results from the RA-BUILD study. Ann. Rheum. Dis. 76, 88–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Fleischmann, R. et al. Baricitinib, methotrexate, or combination in patients with rheumatoid arthritis and no or limited prior disease-modifying antirheumatic drug treatment. Arthritis Rheumatol. 69, 506–517 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Genovese, M. C. et al. Baricitinib in patients with refractory rheumatoid arthritis. N. Engl. J. Med. 374, 1243–1252 (2016). This phase III trial of baricitinib in rheumatoid arthritis found it to be effective in patients who had not responded to biologic DMARDs.

    Article  CAS  PubMed  Google Scholar 

  51. Taylor, P. C. et al. Baricitinib versus placebo or adalimumab in rheumatoid arthritis. N. Engl. J. Med. 376, 652–662 (2017). This study compares baricitinib to adalimumab or placebo in patients with rheumatoid arthritis who do not respond to treatment with methotrexate. It reports the non-inferiority of baricitinib to adalimumab.

    Article  CAS  PubMed  Google Scholar 

  52. Business Wire. U.S. FDA issues complete response letter for baricitinib. http://www.businesswire.com/news/home/20170414005051/en/ Business Wire (2017).

  53. Eli Lilly and Company. Lilly to file baricitinib resubmission to U. S. FDA before end of January 2018. Drugs.com https://www.drugs.com/nda/baricitinib_170830.html (2017).

  54. Takeuchi, T. et al. Efficacy and safety of the oral Janus kinase inhibitor peficitinib (ASP015K) monotherapy in patients with moderate to severe rheumatoid arthritis in Japan: a 12-week, randomised, double-blind, placebo-controlled phase IIb study. Ann. Rheum. Dis. 75, 1057–1064 (2016). This study reports the safety and efficacy of peficitinib in combination with methotrexate for the treatment of rheumatoid arthritis in methotrexate-intolerant patients.

    Article  CAS  PubMed  Google Scholar 

  55. Kivitz, A. J. et al. Peficitinib, a JAK inhibitor, in the treatment of moderate-to-severe rheumatoid arthritis in methotrexate-inadequate responders. Arthritis Rheumatol. 69, 709–719 (2017). This study reports the safety and efficacy of peficitinib monotherapy in patients with moderate to severe rheumatoid arthritis.

    Article  CAS  PubMed  Google Scholar 

  56. Genovese, M. C. et al. Peficitinib, a JAK inhibitor, in combination with limited conventional synthetic disease-modifying antirheumatic drugs in the treatment of moderate-to-severe rheumatoid arthritis. Arthritis Rheumatol. 69, 932–942 (2017). This study reports the safety and efficacy of peficitinib in combination with DMARDs in patients with moderate to severe rheumatoid arthritis.

    Article  CAS  PubMed  Google Scholar 

  57. Mease, P. J. et al. Efficacy and safety of tofacitinib, an oral Janus kinase inhibitor, or adalimumab in patients with active psoriatic arthritis and an inadequate response to conventional synthetic DMARDs: a randomized, placebo-controlled, phase 3 trial [abstract]. Arthritis Rheumatol. 68 (Suppl. 10), 2983 (2016). This study examines the effect of tofacitinib in psoriatic arthritis and was therefore important in the FDA's 2017 decision to recommend approval of tofacitinib for this condition.

    Google Scholar 

  58. Gao, W. et al. Tofacitinib regulates synovial inflammation in psoriatic arthritis, inhibiting STAT activation and induction of negative feedback inhibitors. Ann. Rheum. Dis. 75, 311–315 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. van der Heijde, D. et al. Tofacitinib in patients with ankylosing spondylitis: a phase 2, 16-week, randomized, placebo-controlled, dose-ranging study [abstract]. Arthritis Rheumatol. 67 (Suppl. 10), 5L (2015).

    Google Scholar 

  60. van der Heijde, D. et al. Tofacitinib in patients with ankylosing spondylitis: a phase 2, 16-week, randomised, placebo-controlled, dose-ranging study [abstract]. Ann. Rheum. Dis. 75 (Suppl. 2), OP0002 (2016).

    Google Scholar 

  61. Tseng, B. et al. Tofacitinib response in juvenile idiopathic arthritis (JIA) and collagenous colitis. J. Clin. Rheumatol. 22, 446–448 (2016).

    Article  PubMed  Google Scholar 

  62. Sandborn, W. J. et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 376, 1723–1736 (2017). This paper contains findings from three separate clinical trials evaluating tofacitinib as both an induction and a maintenance therapy for moderate to severe ulcerative colitis. Tofacitinib demonstrated therapeutic efficacy in all three trials.

    Article  CAS  PubMed  Google Scholar 

  63. Sandborn, W. J. et al. A phase 2 study of tofacitinib, an oral Janus kinase inhibitor, in patients with Crohn's disease. Clin. Gastroenterol. Hepatol. 12, 1485–1493.e2 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Panés, J. et al. Tofacitinib for induction and maintenance therapy of Crohn's disease: results of two phase IIb randomised placebo-controlled trials. Gut 66, 1049–1059 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Nalleweg, N. et al. IL-9 and its receptor are predominantly involved in the pathogenesis of UC. Gut 64, 743–755 (2015).

    Article  CAS  PubMed  Google Scholar 

  66. Rutz, S., Wang, X. & Ouyang, W. The IL-20 subfamily of cytokines — from host defence to tissue homeostasis. Nat. Rev. Immunol. 14, 783–795 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Gerlach, K. et al. TH9 cells that express the transcription factor PU.1 drive T cell-mediated colitis via IL-9 receptor signaling in intestinal epithelial cells. Nat. Immunol. 15, 676–686 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn's disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Leung, J. M. et al. IL-22-producing CD4+ cells are depleted in actively inflamed colitis tissue. Mucosal Immunol. 7, 124–133 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Casanova, J. L. & Abel, L. Revisiting Crohn's disease as a primary immunodeficiency of macrophages. J. Exp. Med. 206, 1839–1843 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Bissonnette, R. et al. Tofacitinib withdrawal and retreatment in moderate-to-severe chronic plaque psoriasis: a randomized controlled trial. Br. J. Dermatol. 172, 1395–1406 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Chiricozzi, A. et al. Tofacitinib for the treatment of moderate-to-severe psoriasis. Expert Rev. Clin. Immunol. 11, 443–455 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Krueger, J. et al. Tofacitinib attenuates pathologic immune pathways in patients with psoriasis: a randomized phase 2 study. J. Allergy Clin. Immunol. 137, 1079–1090 (2016).

    Article  CAS  PubMed  Google Scholar 

  74. Bachelez, H. et al. Tofacitinib versus etanercept or placebo in moderate-to-severe chronic plaque psoriasis: a phase 3 randomised non-inferiority trial. Lancet 386, 552–561 (2015). This study compares tofacitinib to etanercept or placebo in the treatment of psoriasis, finding that a 10 mg daily dose of tofacitinib is non-inferior to etanercept but that a 5 mg dose is inferior.

    Article  CAS  PubMed  Google Scholar 

  75. Reuters Staff. FDA declines to expand approval of Pfizer arthritis drug. Reuters http://www.reuters.com/article/pfizer-psoriasis-fda/fda-declines-to-expand-approval-of-pfizer-arthritis-drug-idUSL1N12E2OW20151014 (2015).

  76. Papp, K. A. et al. A randomized phase 2b trial of baricitinib, an oral Janus kinase (JAK) 1/JAK2 inhibitor, in patients with moderate-to-severe psoriasis. Br. J. Dermatol. 174, 1266–1276 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. Papp, K. et al. A phase 2a randomized, double-blind, placebo-controlled, sequential dose-escalation study to evaluate the efficacy and safety of ASP015K, a novel Janus kinase inhibitor, in patients with moderate-to-severe psoriasis. Br. J. Dermatol. 173, 767–776 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Papp, K. A. et al. Treatment of plaque psoriasis with an ointment formulation of the Janus kinase inhibitor, tofacitinib: a phase 2b randomized clinical trial. BMC Dermatol. 16, 15 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Punwani, N. et al. Preliminary clinical activity of a topical JAK1/2 inhibitor in the treatment of psoriasis. J. Am. Acad. Dermatol. 67, 658–664 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Punwani, N. et al. Downmodulation of key inflammatory cell markers with a topical Janus kinase 1/2 inhibitor. Br. J. Dermatol. 173, 989–997 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Guo, H., Cheng, Y., Shapiro, J. & McElwee, K. The role of lymphocytes in the development and treatment of alopecia areata. Expert Rev. Clin. Immunol. 11, 1335–1351 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Xing, L. et al. Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition. Nat. Med. 20, 1043–1049 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, L. Y., Craiglow, B. G., Dai, F. & King, B. A. Tofacitinib for the treatment of severe alopecia areata and variants: a study of 90 patients. J. Am. Acad. Dermatol. 76, 22–28 (2017). This 90-patient retrospective study reviews the efficacy of long-term tofacitinib use for the treatment of alopecia areata, finding that clinical response was seen in 77% of treated patients.

    Article  CAS  PubMed  Google Scholar 

  84. Craiglow, B. G., Liu, L. Y. & King, B. A. Tofacitinib for the treatment of alopecia areata and variants in adolescents. J. Am. Acad. Dermatol. 76, 29–32 (2017).

    Article  CAS  PubMed  Google Scholar 

  85. Scheinberg, M. & Ferreira, S. B. Reversal of alopecia universalis by tofacitinib: a case report. Ann. Intern. Med. 165, 750–751 (2016).

    Article  PubMed  Google Scholar 

  86. Kennedy Crispin, M. et al. Safety and efficacy of the JAK inhibitor tofacitinib citrate in patients with alopecia areata. JCI Insight 1, e89776 (2016). This 3-month open-label study of 60 patients investigates tofacitinib for the treatment of alopecia areata, finding clinical efficacy in this condition.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Pieri, L., Guglielmelli, P. & Vannucchi, A. M. Ruxolitinib-induced reversal of alopecia universalis in a patient with essential thrombocythemia. Am. J. Hematol. 90, 82–83 (2015).

    Article  PubMed  Google Scholar 

  88. Jabbari, A. et al. Reversal of alopecia areata following treatment with the JAK1/2 inhibitor baricitinib. EBioMedicine 2, 351–355 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Gupta, A. K., Carviel, J. L. & Abramovits, W. Efficacy of tofacitinib in treatment of alopecia universalis in two patients. J. Eur. Acad. Dermatol. Venereol. 30, 1373–1378 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Anzengruber, F. et al. Transient efficacy of tofacitinib in alopecia areata universalis. Case Rep. Dermatol. 8, 102–106 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Craiglow, B. G., Tavares, D. & King, B. A. Topical ruxolitinib for the treatment of alopecia universalis. JAMA Dermatol. 152, 490–491 (2016).

    Article  PubMed  Google Scholar 

  92. Cosgrove, S. B. et al. A blinded, randomized, placebo-controlled trial of the efficacy and safety of the Janus kinase inhibitor oclacitinib (Apoquel®) in client-owned dogs with atopic dermatitis. Vet. Dermatol. 24, 587–597 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Gonzales, A. J. et al. Oclacitinib (APOQUEL®) is a novel Janus kinase inhibitor with activity against cytokines involved in allergy. J. Vet. Pharmacol. Ther. 37, 317–324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Amano, W. et al. The Janus kinase inhibitor JTE-052 improves skin barrier function through suppressing signal transducer and activator of transcription 3 signaling. J. Allergy Clin. Immunol. 136, 667–677.e7 (2015).

    Article  CAS  PubMed  Google Scholar 

  95. Bao, L., Shi, V. Y. & Chan, L. S. IL-4 regulates chemokine CCL26 in keratinocytes through the Jak1, 2/Stat6 signal transduction pathway: implication for atopic dermatitis. Mol. Immunol. 50, 91–97 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Lee, H. Y., Stieger, M., Yawalkar, N. & Kakeda, M. Cytokines and chemokines in irritant contact dermatitis. Mediators Inflamm. 2013, 916497 (2013).

    PubMed  PubMed Central  Google Scholar 

  97. Amano, W. et al. JAK inhibitor JTE-052 regulates contact hypersensitivity by downmodulating T cell activation and differentiation. J. Dermatol. Sci. 84, 258–265 (2016).

    Article  CAS  PubMed  Google Scholar 

  98. King, B., Lee, A. I. & Choi, J. Treatment of hypereosinophilic syndrome with cutaneous involvement with the JAK inhibitors tofacitinib and ruxolitinib. J. Invest. Dermatol. 137, 951–954 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Bissonnette, R. et al. Topical tofacitinib for atopic dermatitis: a phase IIa randomized trial. Br. J. Dermatol. 175, 902–911 (2016).

    Article  CAS  PubMed  Google Scholar 

  100. Meng, J. & Steinhoff, M. Molecular mechanisms of pruritus. Curr. Res. Transl Med. 64, 203–206 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Craiglow, B. G. & King, B. A. Tofacitinib citrate for the treatment of vitiligo: a pathogenesis-directed therapy. JAMA Dermatol. 151, 1110–1112 (2015).

    Article  PubMed  Google Scholar 

  102. Koga, T. et al. Successful treatment of palmoplantar pustulosis with rheumatoid arthritis, with tofacitinib: impact of this JAK inhibitor on T-cell differentiation. Clin. Immunol. 173, 147–148 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Damsky, W. & King, B. A. Idiopathic erythema multiforme: evidence of underlying Janus kinase-signal transducer and activator of transcription activation and successful treatment with tofacitinib. JAAD Case Rep. 2, 502–504 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wood, K. J., Bushell, A. & Hester, J. Regulatory immune cells in transplantation. Nat. Rev. Immunol. 12, 417–430 (2012).

    Article  CAS  PubMed  Google Scholar 

  105. Vincenti, F. et al. Randomized phase 2b trial of tofacitinib (CP-690,550) in de novo kidney transplant patients: efficacy, renal function and safety at 1 year. Am. J. Transplant. 12, 2446–2456 (2012).

    Article  CAS  PubMed  Google Scholar 

  106. Vincenti, F. et al. Evaluation of the effect of tofacitinib exposure on outcomes in kidney transplant patients. Am. J. Transplant. 15, 1644–1653 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Moore, C. A. et al. Janus kinase inhibition for immunosuppression in solid organ transplantation: is there a role in complex immunologic challenges? Hum. Immunol. 78, 64–71 (2016).

    Article  CAS  PubMed  Google Scholar 

  108. Montealegre, G. et al. Preliminary response to Janus kinase inhibition with baricitinib in chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperatures (CANDLE). Pediatr. Rheumatol. Online J. 13 (Suppl. 1), O31 (2015).

    Article  PubMed Central  Google Scholar 

  109. Montealegre Sanchez, G. A. et al. Lipodystrophy and elevated temperatures (CANDLE): clinical characterization and initial response to Janus kinase inhibition with baricitinib [abstract]. Arthritis Rheumatol. 65 (Suppl. 10), 1782 (2013).

    Google Scholar 

  110. Furumoto, Y. et al. Tofacitinib ameliorates murine lupus and its associated vascular dysfunction. Arthritis Rheumatol. 69, 148–160 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Paik, J. J. & Christopher-Stine, L. A case of refractory dermatomyositis responsive to tofacitinib. Semin. Arthritis Rheum. 46, e19 (2017).

    Article  PubMed  Google Scholar 

  112. Kurtzman, D. J. et al. Tofacitinib citrate for refractory cutaneous dermatomyositis: an alternative treatment. JAMA Dermatol. 152, 944–945 (2016).

    Article  PubMed  Google Scholar 

  113. Hornung, T. et al. Remission of recalcitrant dermatomyositis treated with ruxolitinib. N. Engl. J. Med. 371, 2537–2538 (2014).

    Article  PubMed  Google Scholar 

  114. [No authors listed.] The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul. Surf. 5, 75–92 (2007).

  115. Liew, S. H. et al. Tofacitinib (CP-690,550), a Janus kinase inhibitor for dry eye disease: results from a phase 1/2 trial. Ophthalmology 119, 1328–1335 (2012).

    Article  PubMed  Google Scholar 

  116. Rothenberg, M. E. et al. Treatment of patients with the hypereosinophilic syndrome with mepolizumab. N. Engl. J. Med. 358, 1215–1228 (2008).

    Article  CAS  PubMed  Google Scholar 

  117. Rimar, D. et al. Tofacitinib for polyarteritis nodosa: a tailored therapy. Ann. Rheum. Dis. 75, 2214–2216 (2016).

    Article  PubMed  Google Scholar 

  118. Okiyama, N. et al. Reversal of CD8 T-cell-mediated mucocutaneous graft-versus-host-like disease by the JAK inhibitor tofacitinib. J. Invest. Dermatol. 134, 992–1000 (2014).

    Article  CAS  PubMed  Google Scholar 

  119. Martin, R., Sospedra, M., Rosito, M. & Engelhardt, B. Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis. Eur. J. Immunol. 46, 2078–2090 (2016).

    Article  CAS  PubMed  Google Scholar 

  120. Tuttle, K. et al. Baricitinib in diabetic kidney disease: results from a phase 2, multi-center, randomized, double-blind, placebo-controlled study [abstract]. Diabetes 64 (Suppl. 1) a114-LB (2015).

    Google Scholar 

  121. Christ, A., Bekkering, S., Latz, E. & Riksen, N. P. Long-term activation of the innate immune system in atherosclerosis. Semin. Immunol. 28, 384–393 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Volpato, S. et al. Cardiovascular disease, interleukin-6, and risk of mortality in older women: the women's health and aging study. Circulation 103, 947–953 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Szelag, M., Piaszyk-Borychowska, A., Plens-Galaska, M., Wesoly, J. & Bluyssen, H. A. Targeted inhibition of STATs and IRFs as a potential treatment strategy in cardiovascular disease. Oncotarget 7, 48788–48812 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Dowty, M. E. et al. An analysis of in vitro cytokine inhibition profiles of tofacitinib and other Janus kinase inhibitors at clinically-meaningful concentrations [abstract]. Arthritis Rheumatol. 66 (Suppl. 10), 1514 (2014).

  125. Strand, V. et al. Systematic review and meta-analysis of serious infections with tofacitinib and biologic disease-modifying antirheumatic drug treatment in rheumatoid arthritis clinical trials. Arthritis Res. Ther. 17, 362 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Wathes, R., Moule, S. & Milojkovic, D. Progressive multifocal leukoencephalopathy associated with ruxolitinib. N. Engl. J. Med. 369, 197–198 (2013).

    Article  CAS  PubMed  Google Scholar 

  127. Winthrop, K. L. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat. Rev. Rheumatol. 13, 234–243 (2017).

    Article  CAS  PubMed  Google Scholar 

  128. van Vollenhoven, R. et al. THU0199 Tofacitinib, an oral Janus kinase inhibitor, in the treatment of rheumatoid arthritis: changes in lymphocytes and lymphocyte subset counts and reversibility after up to 8 years of tofacitinib treatment [abstract]. Ann. Rheum. Dis. 75, 258 (2016).

    Google Scholar 

  129. Rizzi, M. et al. Impact of tofacitinib treatment on human B-cells in vitro and in vivo. J. Autoimmun. 77, 55–66 (2016).

    Article  CAS  PubMed  Google Scholar 

  130. Fink, K. Origin and function of circulating plasmablasts during acute viral infections. Front. Immunol. 3, 78 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Winthrop, K. L. et al. The effect of tofacitinib on pneumococcal and influenza vaccine responses in rheumatoid arthritis. Ann. Rheum. Dis. 75, 687–695 (2015).

    Article  CAS  PubMed  Google Scholar 

  132. Singh, J. A. et al. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Rheumatol. 68, 1–26 (2016).

    PubMed  Google Scholar 

  133. Winthrop, K. L. et al. The safety and immunogenicity of live zoster vaccination in rheumatoid arthritis patients before starting tofacitinib: a randomized phase II trial. Arthritis Rheumatol. http://dx.doi.org/10.1002/art.40187 (2017).

  134. Winthrop, K. L. et al. Herpes zoster and tofacitinib: clinical outcomes and the risk of concomitant therapy. Arthritis Rheumatol. http://dx.doi.org/10.1002/art.40189 (2017).

  135. Taylor, P. et al. Baricitinib versus placebo or adalimumab in patients with active rheumatoid arthritis (RA) and an inadequate response to background methotrexate therapy: results of a phase 3 study [abstract]. Arthritis Rheumatol. 67 (Suppl. 10), 2L (2015).

    Google Scholar 

  136. Solomon, D. H. et al. Disease activity in rheumatoid arthritis and the risk of cardiovascular events. Arthritis Rheumatol. 67, 1449–1455 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Alemao, E. et al. Cardiovascular risk factor management in patients with RA compared to matched non-RA patients. Rheumatology 55, 809–816 (2016).

    Article  PubMed  Google Scholar 

  138. Radner, H., Lesperance, T., Accortt, N. A. & Solomon, D. H. Incidence and prevalence of cardiovascular risk factors among patients with rheumatoid arthritis, psoriasis, or psoriatic arthritis. Arthritis Care Res. http://dx.doi.org/10.1002/acr.23171 (2016).

  139. Mok, C. C. et al. Prevalence of atherosclerotic risk factors and the metabolic syndrome in patients with chronic inflammatory arthritis. Arthritis Care Res. 63, 195–202 (2011).

    Article  Google Scholar 

  140. Hak, A. E., Karlson, E. W., Feskanich, D., Stampfer, M. J. & Costenbader, K. H. Systemic lupus erythematosus and the risk of cardiovascular disease: results from the nurses' health study. Arthritis Rheum. 61, 1396–1402 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Tobin, A. M. et al. Cardiovascular disease and risk factors in patients with psoriasis and psoriatic arthritis. J. Rheumatol. 37, 1386–1394 (2010).

    Article  PubMed  Google Scholar 

  142. Denny, M. F. et al. Interferon-alpha promotes abnormal vasculogenesis in lupus: a potential pathway for premature atherosclerosis. Blood 110, 2907–2915 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Scheller, J., Garbers, C. & Rose-John, S. Interleukin-6: from basic biology to selective blockade of pro-inflammatory activities. Semin. Immunol. 26, 2–12 (2014).

    Article  CAS  PubMed  Google Scholar 

  144. Souto, A. et al. Lipid profile changes in patients with chronic inflammatory arthritis treated with biologic agents and tofacitinib in randomized clinical trials: a systematic review and meta-analysis. Arthritis Rheumatol. 67, 117–127 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Rao, V. U. et al. An evaluation of risk factors for major adverse cardiovascular events during tocilizumab therapy. Arthritis Rheumatol. 67, 372–380 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Charles-Schoeman, C. et al. Potential mechanisms leading to the abnormal lipid profile in patients with rheumatoid arthritis versus healthy volunteers and reversal by tofacitinib. Arthritis Rheumatol. 67, 616–625 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Charles-Schoeman, C. et al. Cardiovascular safety findings in patients with rheumatoid arthritis treated with tofacitinib, an oral Janus kinase inhibitor. Semin. Arthritis Rheum. 46, 261–271 (2016).

    Article  CAS  PubMed  Google Scholar 

  148. Wu, J. J. et al. Effects of tofacitinib on cardiovascular risk factors and cardiovascular outcomes based on phase III and long-term extension data in patients with plaque psoriasis. J. Am. Acad. Dermatol. 75, 897–905 (2016).

    Article  CAS  PubMed  Google Scholar 

  149. Charles-Schoeman, C. et al. Effects of tofacitinib and other DMARDs on lipid profiles in rheumatoid arthritis: implications for the rheumatologist. Semin. Arthritis Rheum. 46, 71–80 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Kume, K. et al. Tofacitinib improves arterial stiffness despite up-regulating serum cholesterol with chronic cardiovascular disease in methotrexate-resistant active rheumatoid arthritis patients. a cohort study [abstract]. Arthritis Rheumatol. 66 (Suppl. 10), 486 (2014).

    Google Scholar 

  151. Xie, F., Yun, H., Bernatsky, S. & Curtis, J. R. Brief report: risk of gastrointestinal perforation among rheumatoid arthritis patients receiving tofacitinib, tocilizumab, or other biologic treatments. Arthritis Rheumatol. 68, 2612–2617 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dudakov, J. A., Hanash, A. M. & van den Brink, M. R. Interleukin-22: immunobiology and pathology. Annu. Rev. Immunol. 33, 747–785 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shouval, D. S. et al. Interleukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans. Adv. Immunol. 122, 177–210 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sivaraman, P. & Cohen, S. B. Malignancy and Janus kinase inhibition. Rheum. Dis. Clin. North Am. 43, 79–93 (2017).

    Article  PubMed  Google Scholar 

  155. Kremer, J. M. et al. Evaluation of the effect of tofacitinib on measured glomerular filtration rate in patients with active rheumatoid arthritis: results from a randomised controlled trial. Arthritis Res. Ther. 17, 95 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Isaacs, J. D. et al. Changes in serum creatinine in patients with active rheumatoid arthritis treated with tofacitinib: results from clinical trials. Arthritis Res. Ther. 16, R158 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Chapin, R. E. et al. Effects of the Janus kinase inhibitor, tofacitinib, on testicular Leydig cell hyperplasia and adenoma in rats, and on prolactin signaling in cultured primary rat Leydig cells. Toxicol. Sci. 155, 148–156 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Van Rompaey, L. et al. Preclinical characterization of GLPG0634, a selective inhibitor of JAK1, for the treatment of inflammatory diseases. J. Immunol. 191, 3568–3577 (2013).

    Article  CAS  PubMed  Google Scholar 

  159. Menet, C. J. et al. Triazolopyridines as selective JAK1 inhibitors: from hit identification to GLPG0634. J. Med. Chem. 57, 9323–9342 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Kettle, J. G. et al. Inhibitors of JAK-family kinases: an update on the patent literature 2013–2015, part 1. Expert Opin. Ther. Pat. 27, 127–143 (2016).

    Article  CAS  PubMed  Google Scholar 

  161. Kettle, J. G. et al. Inhibitors of JAK-family kinases: an update on the patent literature 2013–2015, part 2. Expert Opin. Ther. Pat. 27, 145–161 (2017).

    Article  CAS  PubMed  Google Scholar 

  162. Shimozaki, K., Nakajima, K., Hirano, T. & Nagata, S. Involvement of STAT3 in the granulocyte colony-stimulating factor-induced differentiation of myeloid cells. J. Biol. Chem. 272, 25184–25189 (1997).

    Article  CAS  PubMed  Google Scholar 

  163. Vermeire, S. et al. Clinical remission in patients with moderate-to-severe Crohn's disease treated with filgotinib (the FITZROY study): results from a phase 2, double-blind, randomised, placebo-controlled trial. Lancet 389, 266–275 (2017). This study tests the selective jakinib filgotinib in the treatment of moderate to severe Crohn's disease, finding it to be significantly effective at inducing clinical remission when compared with placebo.

    Article  CAS  PubMed  Google Scholar 

  164. Voss, J. et al. Pharmacodynamics of a novel JAK1 selective inhibitor in rat arthritis and anemia models and in healthy human subjects [abstract]. Ann. Rheum. Dis. 73 (Suppl. 2), THU0127 (2014).

  165. Graff, C. et al. Characterization of ABT-494, a second generation Jak1 selective inhibitor [abstract]. Arthritis Rheumatol. 66 (Suppl. 10), 1499 (2014).

    Google Scholar 

  166. Kremer, J. M. et al. A phase IIb study of ABT-494, a selective JAK-1 inhibitor, in patients with rheumatoid arthritis and an inadequate response to anti-tumor necrosis factor therapy. Arthritis Rheumatol. 68, 2867–2877 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Genovese, M. C. et al. Efficacy and safety of ABT-494, a selective JAK-1 inhibitor, in a phase IIb study in patients with rheumatoid arthritis and an inadequate response to methotrexate. Arthritis Rheumatol. 68, 2857–2866 (2016). This trial finds upadacitinib to be effective in patients with rheumatoid arthritis who had not responded to methotrexate.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Mohamed, M. E., Jungerwirth, S., Asatryan, A., Jiang, P. & Othman, A. Assessment of the effect of CYP3A inhibition, CYP induction, OATP1B inhibition and administration of high-fat meal on the pharmacokinetics of the potent and selective JAK1 inhibitor ABT-494 [abstract]. Arthritis Rheumatol. 67 (Suppl. 10), 2751 (2015).

    Google Scholar 

  169. Eichelbaum, M. & Burk, O. CYP3A genetics in drug metabolism. Nat. Med. 7, 285–287 (2001).

    Article  CAS  PubMed  Google Scholar 

  170. Henriques, C. AbbVie launches phase 3 trial for rheumatoid arthritis. Rheumatoid Arthritis News http://rheumatoidarthritisnews.com/2016/01/29/abbvie-announces-the-launch-of-robust-phase-3-clinical-trial-program-evaluating-abt-494-an-investigational-selective-jak1-inhibitor-for-the-treatment-of-rheumatoid-arthritis-2/ (2016).

  171. Sandborn, W. J. et al. Safety and efficacy of ABT-494 (upadacitinib), an oral Jak1 Inhibitor, as induction therapy in patients with Crohn's disease: results from Celest [abstract]. Gastroenterology 152 (Suppl. 1), 874h (2017). This abstract contains results from the CELEST trial, which reported that upadacitinib is safe and efficacious in the treatment of Crohn's disease.

    Google Scholar 

  172. Ludbrook, V. J. et al. Investigation of selective JAK1 inhibitor GSK2586184 for the treatment of psoriasis in a randomized placebo-controlled phase IIa study. Br. J. Dermatol. 174, 985–995 (2016).

    Article  CAS  PubMed  Google Scholar 

  173. Kahl, L. et al. Safety, tolerability, efficacy and pharmacodynamics of the selective JAK1 inhibitor GSK2586184 in patients with systemic lupus erythematosus. Lupus 25, 1420–1430 (2016). This trial finds decernotinib monotherapy to be efficacious in the treatment of rheumatoid arthritis.

    Article  CAS  PubMed  Google Scholar 

  174. Clark, J. D., Flanagan, M. E. & Telliez, J. B. Discovery and development of Janus kinase (JAK) inhibitors for inflammatory diseases. J. Med. Chem. 57, 5023–5038 (2014). This trial finds decernotinib in combination with conventional DMARDs to be efficacious in the treatment of rheumatoid arthritis.

    Article  CAS  PubMed  Google Scholar 

  175. Genovese, M. C., van Vollenhoven, R. F., Pacheco-Tena, C., Zhang, Y. & Kinnman, N. VX-509 (decernotinib), an oral selective JAK-3 inhibitor, in combination with methotrexate in patients with rheumatoid arthritis. Arthritis Rheumatol. 68, 46–55 (2016).

    Article  CAS  PubMed  Google Scholar 

  176. Genovese, M. C., Yang, F., Ostergaard, M. & Kinnman, N. Efficacy of VX-509 (decernotinib) in combination with a disease-modifying antirheumatic drug in patients with rheumatoid arthritis: clinical and MRI findings. Ann. Rheum. Dis. 75, 1979–1983 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Farmer, L. J. et al. Discovery of VX-509 (decernotinib): a potent and selective Janus kinase 3 inhibitor for the treatment of autoimmune diseases. J. Med. Chem. 58, 7195–7216 (2015).

    Article  CAS  PubMed  Google Scholar 

  178. Fleischmann, R. M. et al. A randomized, double-blind, placebo-controlled, twelve-week, dose-ranging study of decernotinib, an oral selective JAK-3 inhibitor, as monotherapy in patients with active rheumatoid arthritis. Arthritis Rheumatol 67, 334–343 (2015).

    Article  CAS  PubMed  Google Scholar 

  179. Huang, J., Yang, F., Yogaratnam, J. & Shen, J. The effect of deuteration of VX-509 (decernotinib) on drug-drug interactions (DDI) with midazolam [abstract]. Ann. Rheum. Dis. 74 (Suppl. 2), SAT0227 (2015).

    Google Scholar 

  180. Goedken, E. R. et al. Tricyclic covalent inhibitors selectively target Jak3 through an active site thiol. J. Biol. Chem. 290, 4573–4589 (2015).

    Article  CAS  PubMed  Google Scholar 

  181. Telliez, J. B. et al. Discovery of a JAK3-selective inhibitor: functional differentiation of JAK3-selective inhibition over pan-JAK or JAK1-selective inhibition. ACS Chem. Biol. 11, 3442–3451 (2016).

    Article  CAS  PubMed  Google Scholar 

  182. Miao, W., Masse, C., Greenwood, J., Kapeller, R. & Westlin, W. Potent and selective Tyk2 inhibitor highly efficacious in rodent models of inflammatory bowel disease and psoriasis [abstract]. Arthritis Rheumatol. 68 (Suppl. 10), 1911 (2016).

    Google Scholar 

  183. Masse, C. et al. Identification of highly potent and selective Tyk2 inhibitors for the treatment of autoimmune diseases through structure-based drug design (THER2P.961). J. Immunol. 194, 67 (2015).

    Google Scholar 

  184. Gillooly, K. et al. BMS-986165 is a highly potent and selective allosteric inhibitor of Tyk2, blocks IL-12, IL-23 and type I interferon signaling and provides for robust efficacy in preclinical models of systemic lupus erythematosus and inflammatory bowel disease [abstract]. Arthritis Rheumatol. 68 (Suppl. 10), 11L (2016).

    Google Scholar 

  185. Moslin, R. et al. Pseudokinase domain of the Janus Kinase (JAK) TYK2: a novel target for the treatment of immune-mediated inflammatory diseases in 25th Enzyme Mechanisms Conference, O4 (St. Pete Beach, 2017).

    Google Scholar 

  186. Fensome, A. et al. in 252nd American Chemical Society 2016 Annual Meeting and Expo, MEDI 271 (Philadelphia, 2016).

  187. Works, M. G. et al. Inhibition of TYK2 and JAK1 ameliorates imiquimod-induced psoriasis-like dermatitis by inhibiting IL-22 and the IL-23/IL-17 axis. J. Immunol. 193, 3278–3287 (2014).

    Article  CAS  PubMed  Google Scholar 

  188. Mocsai, A., Ruland, J. & Tybulewicz, V. L. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat. Rev. Immunol. 10, 387–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Weinblatt, M. E. et al. An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid arthritis. N. Engl. J. Med. 363, 1303–1312 (2010).

    Article  CAS  PubMed  Google Scholar 

  190. Kheirkhah, A. et al. A pilot randomized trial on safety and efficacy of a novel topical combined inhibitor of Janus kinase 1/3 and spleen tyrosine kinase for GVHD-associated ocular surface disease. Cornea 36, 799–804 (2017).

    Article  PubMed  Google Scholar 

  191. Coffey, G. et al. The novel kinase inhibitor PRT062070 (Cerdulatinib) demonstrates efficacy in models of autoimmunity and B-cell cancer. J. Pharmacol. Exp. Ther. 351, 538–548 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Hume, D. A. & MacDonald, K. P. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 119, 1810–1820 (2012).

    Article  CAS  PubMed  Google Scholar 

  193. Kindler, T., Lipka, D. B. & Fischer, T. FLT3 as a therapeutic target in AML: still challenging after all these years. Blood 116, 5089–5102 (2010).

    Article  CAS  PubMed  Google Scholar 

  194. Madan, B. et al. SB1578, a novel inhibitor of JAK2, FLT3, and c-Fms for the treatment of rheumatoid arthritis. J. Immunol. 189, 4123–4134 (2012).

    Article  CAS  PubMed  Google Scholar 

  195. William, A. D. et al. Discovery of the macrocycle (9E)-15-(2-(pyrrolidin-1-yl)ethoxy)-7,12,25-trioxa-19,21,24-triaza-tetracyclo[18.3.1.1(2,5).1(14,18)]hexacosa-1(24),2,4,9,14(26),15,17,20,22-nonaene (SB1578), a potent inhibitor of Janus kinase 2/FMS-like tyrosine kinase-3 (JAK2/FLT3) for the treatment of rheumatoid arthritis. J. Med. Chem. 55, 2623–2640 (2012).

    Article  CAS  PubMed  Google Scholar 

  196. Smith, G. A., Uchida, K., Weiss, A. & Taunton, J. Essential biphasic role for JAK3 catalytic activity in IL-2 receptor signaling. Nat. Chem. Biol. 12, 373–379 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Haan, C. et al. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. Chem. Biol. 18, 314–323 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Karaman, M. W. et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26, 127–132 (2008).

    Article  CAS  PubMed  Google Scholar 

  199. Li, L. et al. Beryllium-induced lung disease exhibits expression profiles similar to sarcoidosis. Eur. Respir. J. 47, 1797–1808 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Moodley, D. et al. Network pharmacology of JAK inhibitors. Proc. Natl Acad. Sci. USA 113, 9852–9857 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Barroso, N. & Furst, D. E. A. Case series on patients on tofacitinib in combination with a biologic [abstract]. Arthritis Rheumatol. 68 (Suppl. 10), 1651 (2016).

    Google Scholar 

  202. Vahedi, G. et al. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520, 558–562 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. McNally, R. & Eck, M. J. JAK-cytokine receptor recognition, unboxed. Nat. Struct. Mol. Biol. 21, 431–433 (2014). This study examines the effect of tofacitinib in psoriatic arthritis and was therefore important in the FDA's 2017 decision to recommend approval of tofacitinib for this condition.

    Article  CAS  PubMed  Google Scholar 

  204. Chen, X. et al. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA. Cell 93, 827–839 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of D.M.S., M.G. and J.O'S. is supported by the Intramural Research Program of the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. O'Shea.

Ethics declarations

Competing interests

J.O'S. declares that he and the US Government receive royalties based on patents related to the targeting of Janus kinases. J.O'S., M.G. and the US Government have had longstanding Cooperative Research and Development Agreements with Pfizer, which produces tofacitinib, a Janus kinase inhibitor.

PowerPoint slides

Glossary

C-reactive protein

(CRP). A protein classified as an acute phase reactant and produced in the liver in response to inflammation.

Serum amyloid A

An acute phase reactant, produced predominantly in the liver and expressed at different levels in response to inflammatory stimuli.

Phosphoproteomic analysis

A proteome-wide analysis of phosphorylated proteins.

American College of Rheumatology 20%, 50% and 70% response criteria

(ACR20, 50, 70). Standard criteria used to measure the effectiveness of treatments for rheumatoid arthritis. These criteria measure percentage improvement in tender or swollen joint counts and three of the following measures: patient assessment; physician assessment; pain scale; disability/functional questionnaire and acute phase reactants

36-Item Short Form Survey

(SF-36). A set of generic, coherent and easily administered quality-of-life measures that rely on patient self-reporting and are now widely used by managed care organizations for routine monitoring and assessment of care outcomes in adult patients.

Biologics

Agents that target cytokines or cytokine receptors, usually monoclonal antibodies or chimeric receptors.

Baseline structural damage

Abnormal imaging findings on radiographic assessment, specifically joint space narrowing and erosion.

Complete response letter

A letter issued by the US Food and Drug Administration to communicate that it has completed its review of a drug application and decided not to approve it in its present form.

Transmural inflammation

Full-thickness inflammation across the entire bowel wall (as opposed to being limited to the mucosa and submucosa).

Skip lesions

Lesions that are discontinuous. In the context of this Review, the term refers to discontinuous lesions in the gastrointestinal tract.

Psoriasis Activity and Severity Index

A standardized score used to measure the severity and extent of skin involvement in psoriasis. A representative area of psoriasis is selected for each body region, and the intensity of redness, thickness and scaliness is assessed on a scale of 0 (none) to 4 (very severe).

BK viraemia

Disseminated viral infection with BK virus, a polyomavirus whose name is an abbreviation of the name of the index patient from whom this virus was isolated.

Post-transplant lymphoproliferative disease

(PTLD). A post-transplantation malignancy that can occur as a complication of solid organ or haematopoietic stem cell transplantation. Often associated with Epstein-Barr virus infection of B cells.

Sjogren's syndrome

A systemic autoimmune condition characterized by autoimmune exocrinopathy (salivary and lacrimal glands), as well as, in some cases, systemic inflammation (central nervous system, hepatic, skin, renal and others).

Myositis

Inflammation of the muscles. In the context of this Review, myositis refers to the two systemic autoimmune conditions polymyositis and dermatomyositis.

Eosinophilic oesophagitis

A disease characterized by eosinophilic inflammation of the oesophagus, also termed allergic oesophagitis.

Plasmablasts

Immature cells of plasma cell lineage, a type of B cell. Plasmablasts secrete more antibodies than B cells but fewer than mature plasma cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwartz, D., Kanno, Y., Villarino, A. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat Rev Drug Discov 16, 843–862 (2017). https://doi.org/10.1038/nrd.2017.201

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd.2017.201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing