Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Targeting the IL-6/JAK/STAT3 signalling axis in cancer

Key Points

  • The IL-6/JAK/STAT3 signalling pathway is aberrantly hyperactivated in patients with chronic inflammatory conditions and in those with haematopoietic malignancies or solid tumours

  • Multiple cell types in the tumour microenvironment produce IL-6, leading to activation of JAK/STAT3 signalling in both tumour cells and tumour-infiltrating immune cells, which can promote tumour-cell proliferation, survival, invasiveness, and metastasis

  • STAT3 is hyperactivated in tumour-infiltrating immune cells and acts to negatively regulate neutrophils, natural killer cells, effector T cells, and dendritic cells while positively regulating populations of myeloid-derived suppressor cells and regulatory T cells

  • Targeting components of the IL-6/JAK/STAT3 signalling pathway can inhibit tumour cell growth and relieve immunosuppression in the tumour microenvironment

  • Inhibitors of IL-6, the IL-6 receptor, or JAKs have all received FDA approval for various malignancies, and other novel inhibitors of the IL-6/JAK/STAT3 signalling pathway are currently in clinical and/or preclinical development

  • Investigations of the efficacy of IL-6/JAK/STAT3 inhibitors, in combination with immune-checkpoint inhibitors, are warranted

Abstract

The IL-6/JAK/STAT3 pathway is aberrantly hyperactivated in many types of cancer, and such hyperactivation is generally associated with a poor clinical prognosis. In the tumour microenvironment, IL-6/JAK/STAT3 signalling acts to drive the proliferation, survival, invasiveness, and metastasis of tumour cells, while strongly suppressing the antitumour immune response. Thus, treatments that target the IL-6/JAK/STAT3 pathway in patients with cancer are poised to provide therapeutic benefit by directly inhibiting tumour cell growth and by stimulating antitumour immunity. Agents targeting IL-6, the IL-6 receptor, or JAKs have already received FDA approval for the treatment of inflammatory conditions or myeloproliferative neoplasms and for the management of certain adverse effects of chimeric antigen receptor T cells, and are being further evaluated in patients with haematopoietic malignancies and in those with solid tumours. Novel inhibitors of the IL-6/JAK/STAT3 pathway, including STAT3-selective inhibitors, are currently in development. Herein, we review the role of IL-6/JAK/STAT3 signalling in the tumour microenvironment and the status of preclinical and clinical investigations of agents targeting this pathway. We also discuss the potential of combining IL-6/JAK/STAT3 inhibitors with currently approved therapeutic agents directed against immune-checkpoint inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-6 signalling pathways.
Figure 2: Signalling downstream of the IL-6 receptor.
Figure 3: Inhibitors of the IL-6/JAK/STAT3 signalling pathway.

Similar content being viewed by others

References

  1. Kumari, N., Dwarakanath, B. S., Das, A. & Bhatt, A. N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 37, 11553–11572 (2016).

    CAS  PubMed  Google Scholar 

  2. Kusaba, T. et al. Activation of STAT3 is a marker of poor prognosis in human colorectal cancer. Oncol. Rep. 15, 1445–1451 (2006).

    CAS  PubMed  Google Scholar 

  3. Chen, Y., et al. STAT3, a poor survival predicator, is associated with lymph node metastasis from breast cancer. J. Breast Cancer 16, 40–49 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Macha, M. A. et al. Prognostic significance of nuclear pSTAT3 in oral cancer. Head Neck 33, 482–489 (2011).

    PubMed  Google Scholar 

  5. Ludwig, H., Nachbaur, D. M., Fritz, E., Krainer, M. & Huber, H. Interleukin-6 is a prognostic factor in multiple myeloma. Blood 77, 2794–2795 (1991).

    CAS  PubMed  Google Scholar 

  6. Buchert, M., Burns, C. J. & Ernst, M. Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene 35, 939–951 (2016).

    CAS  PubMed  Google Scholar 

  7. Tartaglia, M. et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 34, 148–150 (2003).

    CAS  PubMed  Google Scholar 

  8. Zhang, X. et al. Identification of STAT3 as a substrate of receptor protein tyrosine phosphatase T. Proc. Natl Acad. Sci. USA 104, 4060–4064 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Peyser, N. D. et al. Frequent promoter hypermethylation of PTPRT increases STAT3 activation and sensitivity to STAT3 inhibition in head and neck cancer. Oncogene 35, 1163–1169 (2016).

    CAS  PubMed  Google Scholar 

  10. Peyser, N. D. et al. Loss-of-function PTPRD mutations lead to increased STAT3 activation and sensitivity to STAT3 inhibition in head and neck cancer. PLoS ONE 10, e0135750 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Lui, V. W. et al. Frequent mutation of receptor protein tyrosine phosphatases provides a mechanism for STAT3 hyperactivation in head and neck cancer. Proc. Natl Acad. Sci. USA 111, 1114–1119 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Nozawa, H., Chiu, C. & Hanahan, D. Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proc. Natl Acad. Sci. USA 103, 12493–12498 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nagasaki, T. et al. Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. Br. J. Cancer 110, 469–478 (2014).

    CAS  PubMed  Google Scholar 

  14. Bournazou, E. & Bromberg, J. Targeting the tumor microenvironment: JAK-STAT3 signaling. JAKSTAT 2, e23828 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. Walter, M., Liang, S., Ghosh, S., Hornsby, P. J. & Li, R. Interleukin 6 secreted from adipose stromal cells promotes migration and invasion of breast cancer cells. Oncogene 28, 2745–2755 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Chang, Q. et al. The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia 15, 848–862 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Yu, H., Pardoll, D. & Jove, R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9, 798–809 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu, H. & Jove, R. The STATs of cancer — new molecular targets come of age. Nat. Rev. Cancer 4, 97–105 (2004).

    CAS  PubMed  Google Scholar 

  19. Kortylewski, M. et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med. 11, 1314–1321 (2005).

    CAS  PubMed  Google Scholar 

  20. Yu, H., Kortylewski, M. & Pardoll, D. Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat. Rev. Immunol. 7, 41–51 (2007).

    CAS  PubMed  Google Scholar 

  21. Harris, T. J. et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J. Immunol. 179, 4313–4317 (2007).

    CAS  PubMed  Google Scholar 

  22. Herrmann, A. et al. Targeting Stat3 in the myeloid compartment drastically improves the in vivo antitumor functions of adoptively transferred T cells. Cancer Res. 70, 7455–7464 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kujawski, M. et al. Targeting STAT3 in adoptively transferred T cells promotes their in vivo expansion and antitumor effects. Cancer Res. 70, 9599–9610 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Siegel, A. M. et al. A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity 35, 806–818 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Iwata-Kajihara, T. et al. Enhanced cancer immunotherapy using STAT3-depleted dendritic cells with high Th1-inducing ability and resistance to cancer cell-derived inhibitory factors. J. Immunol. 187, 27–36 (2011).

    CAS  PubMed  Google Scholar 

  26. Gotthardt, D. et al. Loss of STAT3 in murine NK cells enhances NK cell-dependent tumor surveillance. Blood 124, 2370–2379 (2014).

    CAS  PubMed  Google Scholar 

  27. Hossain, D. M. et al. Leukemia cell-targeted STAT3 silencing and TLR9 triggering generate systemic antitumor immunity. Blood 123, 15–25 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Kortylewski, M. & Yu, H. Role of Stat3 in suppressing anti-tumor immunity. Curr. Opin. Immunol. 20, 228–233 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, H., Pal, S. K., Reckamp, K., Figlin, R. A. & Yu, H. STAT3: a target to enhance antitumor immune response. Curr. Top. Microbiol. Immunol. 344, 41–59 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lederle, W. et al. IL-6 promotes malignant growth of skin SCCs by regulating a network of autocrine and paracrine cytokines. Int. J. Cancer 128, 2803–2814 (2011).

    CAS  PubMed  Google Scholar 

  31. Mullberg, J. et al. IL-6 receptor independent stimulation of human gp130 by viral IL-6. J. Immunol. 164, 4672–4677 (2000).

    CAS  PubMed  Google Scholar 

  32. Scheller, J., Chalaris, A., Schmidt-Arras, D. & Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta 1813, 878–888 (2011).

    CAS  PubMed  Google Scholar 

  33. Hirano, T. et al. Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324, 73–76 (1986).

    CAS  PubMed  Google Scholar 

  34. Kopf, M. et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368, 339–342 (1994).

    CAS  PubMed  Google Scholar 

  35. Hunter, C. A. & Jones, S. A. IL-6 as a keystone cytokine in health and disease. Nat. Immunol. 16, 448–457 (2015).

    CAS  PubMed  Google Scholar 

  36. Ohshima, S. et al. Interleukin 6 plays a key role in the development of antigen-induced arthritis. Proc. Natl Acad. Sci. USA 95, 8222–8226 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Alonzi, T. et al. Interleukin 6 is required for the development of collagen-induced arthritis. J. Exp. Med. 187, 461–468 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Screpanti, I. et al. Inactivation of the IL-6 gene prevents development of multicentric Castleman's disease in C/EBP beta-deficient mice. J. Exp. Med. 184, 1561–1566 (1996).

    CAS  PubMed  Google Scholar 

  39. Garnero, P., Thompson, E., Woodworth, T. & Smolen, J. S. Rapid and sustained improvement in bone and cartilage turnover markers with the anti-interleukin-6 receptor inhibitor tocilizumab plus methotrexate in rheumatoid arthritis patients with an inadequate response to methotrexate: results from a substudy of the multicenter double-blind, placebo-controlled trial of tocilizumab in inadequate responders to methotrexate alone. Arthritis Rheum. 62, 33–43 (2010).

    CAS  PubMed  Google Scholar 

  40. Nishimoto, N. et al. Improvement in Castleman's disease by humanized anti-interleukin-6 receptor antibody therapy. Blood 95, 56–61 (2000).

    CAS  PubMed  Google Scholar 

  41. Yoon, S. et al. NF-kappaB and STAT3 cooperatively induce IL6 in starved cancer cells. Oncogene 31, 3467–3481 (2012).

    CAS  PubMed  Google Scholar 

  42. Campbell, I. L. et al. Trans-signaling is a dominant mechanism for the pathogenic actions of interleukin-6 in the brain. J. Neurosci. 34, 2503–2513 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rose-John, S., Scheller, J., Elson, G. & Jones, S. A. Interleukin-6 biology is coordinated by membrane-bound and soluble receptors: role in inflammation and cancer. J. Leukoc. Biol. 80, 227–236 (2006).

    CAS  PubMed  Google Scholar 

  44. Wolf, J., Rose-John, S. & Garbers, C. Interleukin-6 and its receptors: a highly regulated and dynamic system. Cytokine 70, 11–20 (2014).

    CAS  PubMed  Google Scholar 

  45. Skiniotis, G., Boulanger, M. J., Garcia, K. C. & Walz, T. Signaling conformations of the tall cytokine receptor gp130 when in complex with IL-6 and IL-6 receptor. Nat. Struct. Mol. Biol. 12, 545–551 (2005).

    CAS  PubMed  Google Scholar 

  46. Honda, M. et al. Human soluble IL-6 receptor: its detection and enhanced release by HIV infection. J. Immunol. 148, 2175–2180 (1992).

    CAS  PubMed  Google Scholar 

  47. Novick, D., Engelmann, H., Wallach, D. & Rubinstein, M. Soluble cytokine receptors are present in normal human urine. J. Exp. Med. 170, 1409–1414 (1989).

    CAS  PubMed  Google Scholar 

  48. Baran, P., Nitz, R., Grotzinger, J., Scheller, J. & Garbers, C. Minimal interleukin 6 (IL-6) receptor stalk composition for IL-6 receptor shedding and IL-6 classic signaling. J. Biol. Chem. 288, 14756–14768 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jones, S. A., Horiuchi, S., Topley, N., Yamamoto, N. & Fuller, G. M. The soluble interleukin 6 receptor: mechanisms of production and implications in disease. FASEB J. 15, 43–58 (2001).

    CAS  PubMed  Google Scholar 

  50. Diamant, M. et al. Cloning and expression of an alternatively spliced mRNA encoding a soluble form of the human interleukin-6 signal transducer gp130. FEBS Lett. 412, 379–384 (1997).

    CAS  PubMed  Google Scholar 

  51. Jostock, T. et al. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur. J. Biochem. 268, 160–167 (2001).

    CAS  PubMed  Google Scholar 

  52. Rose-John, S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci. 8, 1237–1247 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Haan, C., Kreis, S., Margue, C. & Behrmann, I. Jaks and cytokine receptors — an intimate relationship. Biochem. Pharmacol. 72, 1538–1546 (2006).

    CAS  PubMed  Google Scholar 

  54. Ernst, M. & Jenkins, B. J. Acquiring signalling specificity from the cytokine receptor gp130. Trends Genet. 20, 23–32 (2004).

    CAS  PubMed  Google Scholar 

  55. Bromberg, J. Stat proteins and oncogenesis. J. Clin. Invest. 109, 1139–1142 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dorritie, K. A., McCubrey, J. A. & Johnson, D. E. STAT transcription factors in hematopoiesis and leukemogenesis: opportunities for therapeutic intervention. Leukemia 28, 248–257 (2014).

    CAS  PubMed  Google Scholar 

  57. Takeda, K. et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl Acad. Sci. USA 94, 3801–3804 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cimica, V., Chen, H. C., Iyer, J. K. & Reich, N. C. Dynamics of the STAT3 transcription factor: nuclear import dependent on Ran and importin-beta1. PLoS ONE 6, e20188 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Benekli, M., Baumann, H. & Wetzler, M. Targeting signal transducer and activator of transcription signaling pathway in leukemias. J. Clin. Oncol. 27, 4422–4432 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ilaria, R. L. Jr., Van Etten, R. A. P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J. Biol. Chem. 271, 31704–31710 (1996).

    CAS  PubMed  Google Scholar 

  61. Stark, G. R., Darnell, J. E. Jr. The JAK-STAT pathway at twenty. Immunity 36, 503–514 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim, E. et al. Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell 23, 839–852 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sekine, Y. et al. Regulation of STAT3-mediated signaling by LMW-DSP2. Oncogene 25, 5801–5806 (2006).

    CAS  PubMed  Google Scholar 

  64. Kim, D. J., Tremblay, M. L. & Digiovanni, J. Protein tyrosine phosphatases, TC-PTP, SHP1, and SHP2, cooperate in rapid dephosphorylation of Stat3 in keratinocytes following UVB irradiation. PLoS ONE 5, e10290 (2010).

    PubMed  PubMed Central  Google Scholar 

  65. Zhang, M. et al. Both miR-17-5p and miR-20a alleviate suppressive potential of myeloid-derived suppressor cells by modulating STAT3 expression. J. Immunol. 186, 4716–4724 (2011).

    CAS  PubMed  Google Scholar 

  66. Rokavec, M. et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J. Clin. Invest. 124, 1853–1867 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wei, J. et al. miR-124 inhibits STAT3 signaling to enhance T cell-mediated immune clearance of glioma. Cancer Res. 73, 3913–3926 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang, Y. et al. MicroRNA-218 functions as a tumor suppressor in lung cancer by targeting IL-6/STAT3 and negatively correlates with poor prognosis. Mol. Cancer 16, 141 (2017).

    PubMed  PubMed Central  Google Scholar 

  69. Chaluvally-Raghavan, P. et al. Direct upregulation of STAT3 by microRNA-551b-3p deregulates growth and metastasis of ovarian cancer. Cell Rep. 15, 1493–1504 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wu, W. et al. MicroRNA-18a modulates STAT3 activity through negative regulation of PIAS3 during gastric adenocarcinogenesis. Br. J. Cancer 108, 653–661 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, S. et al. microRNA 221- and 222-mediated feedback loop maintains constitutive activation of NFkappaB and STAT3 in colorectal cancer cells. Gastroenterology 147, 847–859.e11 (2014).

    CAS  PubMed  Google Scholar 

  72. Dethlefsen, C., Hojfeldt, G. & Hojman, P. The role of intratumoral and systemic IL-6 in breast cancer. Breast Cancer Res. Treat. 138, 657–664 (2013).

    CAS  PubMed  Google Scholar 

  73. Kotowicz, B., Fuksiewicz, M., Jonska-Gmyrek, J., Bidzinski, M. & Kowalska, M. The assessment of the prognostic value of tumor markers and cytokines as SCCAg, CYFRA 21.1, IL-6, VEGF and sTNF receptors in patients with squamous cell cervical cancer, particularly with early stage of the disease. Tumour Biol. 37, 1271–1278 (2016).

    CAS  PubMed  Google Scholar 

  74. Chung, Y. C. & Chang, Y. F. Serum interleukin-6 levels reflect the disease status of colorectal cancer. J. Surg. Oncol. 83, 222–226 (2003).

    PubMed  Google Scholar 

  75. Chen, M. F. et al. IL-6 expression predicts treatment response and outcome in squamous cell carcinoma of the esophagus. Mol. Cancer 12, 26 (2013).

    PubMed  PubMed Central  Google Scholar 

  76. Jinno, T. et al. Increased expression of interleukin-6 predicts poor response to chemoradiotherapy and unfavorable prognosis in oral squamous cell carcinoma. Oncol. Rep. 33, 2161–2168 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Riedel, F. et al. Serum levels of interleukin-6 in patients with primary head and neck squamous cell carcinoma. Anticancer Res. 25, 2761–2765 (2005).

    CAS  PubMed  Google Scholar 

  78. Maccio, A. & Madeddu, C. The role of interleukin-6 in the evolution of ovarian cancer: clinical and prognostic implications—a review. J. Mol. Med. 91, 1355–1368 (2013).

    CAS  PubMed  Google Scholar 

  79. Sanguinete, M. M. M. et al. Serum IL-6 and IL-8 correlate with prognostic factors in ovarian cancer. Immunol. Invest. 46, 677–688 (2017).

    CAS  PubMed  Google Scholar 

  80. Miura, T. et al. Characterization of patients with advanced pancreatic cancer and high serum interleukin-6 levels. Pancreas 44, 756–763 (2015).

    CAS  PubMed  Google Scholar 

  81. Culig, Z. & Puhr, M. Interleukin-6: a multifunctional targetable cytokine in human prostate cancer. Mol. Cell. Endocrinol. 360, 52–58 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Altundag, O., Altundag, K. & Gunduz, E. Interleukin-6 and C-reactive protein in metastatic renal cell carcinoma. J. Clin. Oncol. 23, 1044 (2005).

    PubMed  Google Scholar 

  83. Chang, C. H. et al. Circulating interleukin-6 level is a prognostic marker for survival in advanced nonsmall cell lung cancer patients treated with chemotherapy. Int. J. Cancer 132, 1977–1985 (2013).

    CAS  PubMed  Google Scholar 

  84. Watt, D. G., Horgan, P. G. & McMillan, D. C. Routine clinical markers of the magnitude of the systemic inflammatory response after elective operation: a systematic review. Surgery 157, 362–380 (2015).

    PubMed  Google Scholar 

  85. Wu, C. T., Chen, M. F., Chen, W. C. & Hsieh, C. C. The role of IL-6 in the radiation response of prostate cancer. Radiat. Oncol. 8, 159 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Knupfer, H. & Preiss, R. Serum interleukin-6 levels in colorectal cancer patients — a summary of published results. Int. J. Colorectal Dis. 25, 135–140 (2010).

    PubMed  Google Scholar 

  87. Duffy, S. A. et al. Interleukin-6 predicts recurrence and survival among head and neck cancer patients. Cancer 113, 750–757 (2008).

    PubMed  Google Scholar 

  88. Gao, J., Zhao, S. & Halstensen, T. S. Increased interleukin-6 expression is associated with poor prognosis and acquired cisplatin resistance in head and neck squamous cell carcinoma. Oncol. Rep. 35, 3265–3274 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Sansone, P. et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J. Clin. Invest. 117, 3988–4002 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Becker, C. et al. TGF-beta suppresses tumor progression in colon cancer by inhibition of IL-6 trans-signaling. Immunity 21, 491–501 (2004).

    CAS  PubMed  Google Scholar 

  91. Becker, C. et al. IL-6 signaling promotes tumor growth in colorectal cancer. Cell Cycle 4, 217–220 (2005).

    CAS  PubMed  Google Scholar 

  92. Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gao, S. P. et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J. Clin. Invest. 117, 3846–3856 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Lesina, M. et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 19, 456–469 (2011).

    CAS  PubMed  Google Scholar 

  95. Sullivan, N. J. et al. Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 28, 2940–2947 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Yadav, A., Kumar, B., Datta, J., Teknos, T. N. & Kumar, P. IL-6 promotes head and neck tumor metastasis by inducing epithelial-mesenchymal transition via the JAK-STAT3-SNAIL signaling pathway. Mol. Cancer Res. 9, 1658–1667 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Baltgalvis, K. A. et al. Interleukin-6 and cachexia in ApcMin/+ mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R393–R401 (2008).

    CAS  PubMed  Google Scholar 

  98. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    PubMed  PubMed Central  Google Scholar 

  99. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    PubMed  Google Scholar 

  100. Rebouissou, S. et al. Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457, 200–204 (2009).

    CAS  PubMed  Google Scholar 

  101. Fishman, D. et al. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J. Clin. Invest. 102, 1369–1376 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Kralovics, R. et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 352, 1779–1790 (2005).

    CAS  PubMed  Google Scholar 

  103. Jones, A. V. et al. Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood 106, 2162–2168 (2005).

    CAS  PubMed  Google Scholar 

  104. Walters, D. K. et al. Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell 10, 65–75 (2006).

    CAS  PubMed  Google Scholar 

  105. Bose, P. & Verstovsek, S. JAK2 inhibitors for myeloproliferative neoplasms: what is next? Blood 130, 115–125 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Senkevitch, E. & Durum, S. The promise of Janus kinase inhibitors in the treatment of hematological malignancies. Cytokine 98, 33–41 (2017).

    CAS  PubMed  Google Scholar 

  107. Baxter, E. J. et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet 365, 1054–1061 (2005).

    CAS  PubMed  Google Scholar 

  108. James, C. et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature 434, 1144–1148 (2005).

    CAS  PubMed  Google Scholar 

  109. Lacronique, V. et al. TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 278, 1309–1312 (1997).

    CAS  PubMed  Google Scholar 

  110. Kan, Z. et al. Whole-genome sequencing identifies recurrent mutations in hepatocellular carcinoma. Genome Res. 23, 1422–1433 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Frank, D. A. STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett. 251, 199–210 (2007).

    CAS  PubMed  Google Scholar 

  112. Roeser, J. C., Leach, S. D. & McAllister, F. Emerging strategies for cancer immunoprevention. Oncogene 34, 6029–6039 (2015).

    CAS  PubMed  Google Scholar 

  113. Chen, C. L. et al. Signal transducer and activator of transcription 3 activation is associated with bladder cancer cell growth and survival. Mol. Cancer 7, 78 (2008).

    PubMed  PubMed Central  Google Scholar 

  114. Sonnenblick, A. et al. Tissue microarray-based study of patients with lymph node-positive breast cancer shows tyrosine phosphorylation of signal transducer and activator of transcription 3 (tyrosine705-STAT3) is a marker of good prognosis. Clin. Transl Oncol. 14, 232–236 (2012).

    CAS  PubMed  Google Scholar 

  115. Schaefer, L. K., Ren, Z., Fuller, G. N. & Schaefer, T. S. Constitutive activation of Stat3alpha in brain tumors: localization to tumor endothelial cells and activation by the endothelial tyrosine kinase receptor (VEGFR-2). Oncogene 21, 2058–2065 (2002).

    CAS  PubMed  Google Scholar 

  116. Takemoto, S. et al. Expression of activated signal transducer and activator of transcription-3 predicts poor prognosis in cervical squamous-cell carcinoma. Br. J. Cancer 101, 967–972 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang, H. F. et al. The opposing function of STAT3 as an oncoprotein and tumor suppressor is dictated by the expression status of STAT3beta in esophageal squamous cell carcinoma. Clin. Cancer Res. 22, 691–703 (2016).

    CAS  PubMed  Google Scholar 

  118. Geiger, J. L., Grandis, J. R. & Bauman, J. E. The STAT3 pathway as a therapeutic target in head and neck cancer: barriers and innovations. Oral Oncol. 56, 84–92 (2016).

    CAS  PubMed  Google Scholar 

  119. Li, S. et al. Icaritin inhibits JAK/STAT3 signaling and growth of renal cell carcinoma. PLoS ONE 8, e81657 (2013).

    PubMed  PubMed Central  Google Scholar 

  120. Wang, Y., Qu, A. & Wang, H. Signal transducer and activator of transcription 4 in liver diseases. Int. J. Biol. Sci. 11, 448–455 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Suh, Y. A., Jo, S. Y., Lee, H. Y. & Lee, C. Inhibition of IL-6/STAT3 axis and targeting Axl and Tyro3 receptor tyrosine kinases by apigenin circumvent taxol resistance in ovarian cancer cells. Int. J. Oncol. 46, 1405–1411 (2015).

    CAS  PubMed  Google Scholar 

  122. Sahu, R. P. & Srivastava, S. K. The role of STAT-3 in the induction of apoptosis in pancreatic cancer cells by benzyl isothiocyanate. J. Natl Cancer Inst. 101, 176–193 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, Z. et al. Activation of STAT3 in human gastric cancer cells via interleukin (IL)-6-type cytokine signaling correlates with clinical implications. PLoS ONE 8, e75788 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Subramaniam, K. S. et al. Cancer-associated fibroblasts promote endometrial cancer growth via activation of interleukin-6/STAT-3/c-Myc pathway. Am. J. Cancer Res. 6, 200–213 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Bar-Natan, M., Nelson, E. A., Xiang, M. & Frank, D. A. STAT signaling in the pathogenesis and treatment of myeloid malignancies. JAKSTAT 1, 55–64 (2012).

    PubMed  PubMed Central  Google Scholar 

  126. Bromberg, J. F. et al. Stat3 as an oncogene. Cell 98, 295–303 (1999).

    CAS  PubMed  Google Scholar 

  127. Ho, P. L., Lay, E. J., Jian, W., Parra, D. & Chan, K. S. Stat3 activation in urothelial stem cells leads to direct progression to invasive bladder cancer. Cancer Res. 72, 3135–3142 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Kryczek, I. et al. IL-22(+)CD4(+) T cells promote colorectal cancer stemness via STAT3 transcription factor activation and induction of the methyltransferase DOT1L. Immunity 40, 772–784 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Leong, P. L. et al. Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc. Natl Acad. Sci. USA 100, 4138–4143 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Li, Y. et al. Activation of the signal transducers and activators of the transcription 3 pathway in alveolar epithelial cells induces inflammation and adenocarcinomas in mouse lung. Cancer Res. 67, 8494–8503 (2007).

    CAS  PubMed  Google Scholar 

  131. Fukuda, A. et al. Stat3 and MMP7 contribute to pancreatic ductal adenocarcinoma initiation and progression. Cancer Cell 19, 441–455 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Abdulghani, J. et al. Stat3 promotes metastatic progression of prostate cancer. Am. J. Pathol. 172, 1717–1728 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Kim, D. J., Angel, J. M., Sano, S. & DiGiovanni, J. Constitutive activation and targeted disruption of signal transducer and activator of transcription 3 (Stat3) in mouse epidermis reveal its critical role in UVB-induced skin carcinogenesis. Oncogene 28, 950–960 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Spitzner, M. et al. STAT3: a novel molecular mediator of resistance to chemoradiotherapy. Cancers 6, 1986–2011 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Sen, M. et al. Targeting Stat3 abrogates EGFR inhibitor resistance in cancer. Clin. Cancer Res. 18, 4986–4996 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Lee, H. J. et al. Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells. Cancer Cell 26, 207–221 (2014).

    CAS  PubMed  Google Scholar 

  137. Iliopoulos, D., Jaeger, S. A., Hirsch, H. A., Bulyk, M. L. & Struhl, K. STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol. Cell 39, 493–506 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Li, H. S. et al. Bypassing STAT3-mediated inhibition of the transcriptional regulator ID2 improves the antitumor efficacy of dendritic cells. Sci. Signal. 9, ra94 (2016).

    PubMed  PubMed Central  Google Scholar 

  139. Wang, T. et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat. Med. 10, 48–54 (2004).

    PubMed  Google Scholar 

  140. Kujawski, M. et al. Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J. Clin. Invest. 118, 3367–3377 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Koskela, H. L. et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N. Engl. J. Med. 366, 1905–1913 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Kucuk, C. et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat. Commun. 6, 6025 (2015).

    CAS  PubMed  Google Scholar 

  143. Andersson, E. et al. Activating somatic mutations outside the SH2-domain of STAT3 in LGL leukemia. Leukemia 30, 1204–1208 (2016).

    CAS  PubMed  Google Scholar 

  144. Grandis, J. R. et al. Requirement of Stat3 but not Stat1 activation for epidermal growth factor receptor-mediated cell growth In vitro. J. Clin. Invest. 102, 1385–1392 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Ozawa, Y. et al. Src family kinases promote AML cell survival through activation of signal transducers and activators of transcription (STAT). Leuk. Res. 32, 893–903 (2008).

    CAS  PubMed  Google Scholar 

  146. Grabner, B. et al. Disruption of STAT3 signalling promotes KRAS-induced lung tumorigenesis. Nat. Commun. 6, 6285 (2015).

    CAS  PubMed  Google Scholar 

  147. Lei, Y. et al. Hdac7 promotes lung tumorigenesis by inhibiting Stat3 activation. Mol. Cancer 16, 170 (2017).

    PubMed  PubMed Central  Google Scholar 

  148. Musteanu, M. et al. Stat3 is a negative regulator of intestinal tumor progression in Apc(Min) mice. Gastroenterology 138, 1003–1011.e5 (2010).

    CAS  PubMed  Google Scholar 

  149. Hsiao, J. R. et al. Constitutive activation of STAT3 and STAT5 is present in the majority of nasopharyngeal carcinoma and correlates with better prognosis. Br. J. Cancer 89, 344–349 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Gordziel, C., Bratsch, J., Moriggl, R., Knosel, T. & Friedrich, K. Both STAT1 and STAT3 are favourable prognostic determinants in colorectal carcinoma. Br. J. Cancer 109, 138–146 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Setsu, N. et al. Phosphorylation of signal transducer and activator of transcription 3 in soft tissue leiomyosarcoma is associated with a better prognosis. Int. J. Cancer 132, 109–115 (2013).

    CAS  PubMed  Google Scholar 

  152. van Rhee, F. et al. Siltuximab, a novel anti-interleukin-6 monoclonal antibody, for Castleman's disease. J. Clin. Oncol. 28, 3701–3708 (2010).

    CAS  PubMed  Google Scholar 

  153. van Rhee, F. et al. Siltuximab for multicentric Castleman's disease: a randomised, double-blind, placebo-controlled trial. Lancet Oncol. 15, 966–974 (2014).

    CAS  PubMed  Google Scholar 

  154. Kurzrock, R. et al. A phase I, open-label study of siltuximab, an anti-IL-6 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma, multiple myeloma, or Castleman disease. Clin. Cancer Res. 19, 3659–3670 (2013).

    CAS  PubMed  Google Scholar 

  155. Hunsucker, S. A. et al. Blockade of interleukin-6 signalling with siltuximab enhances melphalan cytotoxicity in preclinical models of multiple myeloma. Br. J. Haematol. 152, 579–592 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Suzuki, K. et al. Phase 1 study in Japan of siltuximab, an anti-IL-6 monoclonal antibody, in relapsed/refractory multiple myeloma. Int. J. Hematol. 101, 286–294 (2015).

    CAS  PubMed  Google Scholar 

  157. Orlowski, R. Z. et al. A phase 2, randomized, double-blind, placebo-controlled study of siltuximab (anti-IL-6 mAb) and bortezomib versus bortezomib alone in patients with relapsed or refractory multiple myeloma. Am. J. Hematol. 90, 42–49 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Voorhees, P. M. et al. A phase 2 multicentre study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with relapsed or refractory multiple myeloma. Br. J. Haematol. 161, 357–366 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. San-Miguel, J. et al. Phase 2 randomized study of bortezomib-melphalan-prednisone with or without siltuximab (anti-IL-6) in multiple myeloma. Blood 123, 4136–4142 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Shah, J. J. et al. Siltuximab (CNTO 328) with lenalidomide, bortezomib and dexamethasone in newly-diagnosed, previously untreated multiple myeloma: an open-label phase I trial. Blood Cancer J. 6, e396 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Coward, J. et al. Interleukin-6 as a therapeutic target in human ovarian cancer. Clin. Cancer Res. 17, 6083–6096 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Cavarretta, I. T. et al. Mcl-1 is regulated by IL-6 and mediates the survival activity of the cytokine in a model of late stage prostate carcinoma. Adv. Exp. Med. Biol. 617, 547–555 (2008).

    CAS  PubMed  Google Scholar 

  163. Song, L. et al. Antitumor efficacy of the anti-interleukin-6 (IL-6) antibody siltuximab in mouse xenograft models of lung cancer. J. Thorac Oncol. 9, 974–982 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Karkera, J. et al. The anti-interleukin-6 antibody siltuximab down-regulates genes implicated in tumorigenesis in prostate cancer patients from a phase I study. Prostate 71, 1455–1465 (2011).

    CAS  PubMed  Google Scholar 

  165. Dorff, T. B. et al. Clinical and correlative results of SWOG S0354: a phase II trial of CNTO328 (siltuximab), a monoclonal antibody against interleukin-6, in chemotherapy-pretreated patients with castration-resistant prostate cancer. Clin. Cancer Res. 16, 3028–3034 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Fizazi, K. et al. Randomised phase II study of siltuximab (CNTO 328), an anti-IL-6 monoclonal antibody, in combination with mitoxantrone/prednisone versus mitoxantrone/prednisone alone in metastatic castration-resistant prostate cancer. Eur. J. Cancer 48, 85–93 (2012).

    CAS  PubMed  Google Scholar 

  167. Rossi, J. F. et al. A phase I/II study of siltuximab (CNTO 328), an anti-interleukin-6 monoclonal antibody, in metastatic renal cell cancer. Br. J. Cancer 103, 1154–1162 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Angevin, E. et al. A phase I/II, multiple-dose, dose-escalation study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with advanced solid tumors. Clin. Cancer Res. 20, 2192–2204 (2014).

    CAS  PubMed  Google Scholar 

  169. Liu, X., Jones, G. W., Choy, E. H. & Jones, S. A. The biology behind interleukin-6 targeted interventions. Curr. Opin. Rheumatol 28, 152–160 (2016).

    CAS  PubMed  Google Scholar 

  170. Finkel, K. A. et al. IL-6 inhibition with MEDI5117 decreases the fraction of head and neck cancer stem cells and prevents tumor recurrence. Neoplasia 18, 273–281 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Zhong, H. et al. Novel IL6 antibody sensitizes multiple tumor types to chemotherapy including trastuzumab-resistant tumors. Cancer Res. 76, 480–490 (2016).

    CAS  PubMed  Google Scholar 

  172. Yanaihara, N. et al. Antitumor effects of interleukin-6 (IL-6)/interleukin-6 receptor (IL-6R) signaling pathway inhibition in clear cell carcinoma of the ovary. Mol. Carcinog. 55, 832–841 (2016).

    CAS  PubMed  Google Scholar 

  173. Goumas, F. A. et al. Inhibition of IL-6 signaling significantly reduces primary tumor growth and recurrencies in orthotopic xenograft models of pancreatic cancer. Int. J. Cancer 137, 1035–1046 (2015).

    CAS  PubMed  Google Scholar 

  174. Dijkgraaf, E. M. et al. A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-alpha2b in patients with recurrent epithelial ovarian cancer. Ann. Oncol. 26, 2141–2149 (2015).

    CAS  PubMed  Google Scholar 

  175. Matsumoto, S. et al. Essential roles of IL-6 trans-signaling in colonic epithelial cells, induced by the IL-6/soluble-IL-6 receptor derived from lamina propria macrophages, on the development of colitis-associated premalignant cancer in a murine model. J. Immunol. 184, 1543–1551 (2010).

    CAS  PubMed  Google Scholar 

  176. Brooks, G. D. et al. IL6 trans-signaling promotes KRAS-driven lung carcinogenesis. Cancer Res. 76, 866–876 (2016).

    CAS  PubMed  Google Scholar 

  177. Hemmann, U. et al. Differential activation of acute phase response factor/Stat3 and Stat1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. II. Src homology SH2 domains define the specificity of stat factor activation. J. Biol. Chem. 271, 12999–13007 (1996).

    CAS  PubMed  Google Scholar 

  178. Gerhartz, C. et al. Differential activation of acute phase response factor/STAT3 and STAT1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. I. Definition of a novel phosphotyrosine motif mediating STAT1 activation. J. Biol. Chem. 271, 12991–12998 (1996).

    CAS  PubMed  Google Scholar 

  179. Meyer, D. M. et al. Anti-inflammatory activity and neutrophil reductions mediated by the JAK1/JAK3 inhibitor, CP-690,550, in rat adjuvant-induced arthritis. J. Inflamm. 7, 41 (2010).

    Google Scholar 

  180. Fleischmann, R. et al. Placebo-controlled trial of tofacitinib monotherapy in rheumatoid arthritis. N. Engl. J. Med. 367, 495–507 (2012).

    CAS  PubMed  Google Scholar 

  181. van Vollenhoven, R. F. et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N. Engl. J. Med. 367, 508–519 (2012).

    CAS  PubMed  Google Scholar 

  182. Lee, E. B. et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N. Engl. J. Med. 370, 2377–2386 (2014).

    PubMed  Google Scholar 

  183. Hodge, J. A. et al. The mechanism of action of tofacitinib — an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis. Clin. Exp. Rheumatol 34, 318–328 (2016).

    PubMed  Google Scholar 

  184. Bachelez, H. et al. Tofacitinib versus etanercept or placebo in moderate-to-severe chronic plaque psoriasis: a phase 3 randomised non-inferiority trial. Lancet 386, 552–561 (2015).

    CAS  PubMed  Google Scholar 

  185. Sandborn, W. J. et al. Tofacitinib as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 376, 1723–1736 (2017).

    CAS  PubMed  Google Scholar 

  186. Panes, J. et al. Tofacitinib for induction and maintenance therapy of Crohn's disease: results of two phase IIb randomised placebo-controlled trials. Gut 66, 1049–1059 (2017).

    CAS  PubMed  Google Scholar 

  187. Verstovsek, S. et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N. Engl. J. Med. 366, 799–807 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Harrison, C. et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N. Engl. J. Med. 366, 787–798 (2012).

    CAS  PubMed  Google Scholar 

  189. Harrison, C. N. et al. Long-term findings from COMFORT-II, a phase 3 study of ruxolitinib versus best available therapy for myelofibrosis. Leukemia 30, 1701–1707 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Neubauer, H. et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 93, 397–409 (1998).

    CAS  PubMed  Google Scholar 

  191. Verstovsek, S. et al. The clinical benefit of ruxolitinib across patient subgroups: analysis of a placebo-controlled, Phase III study in patients with myelofibrosis. Br. J. Haematol. 161, 508–516 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Vannucchi, A. M. et al. Ruxolitinib versus standard therapy for the treatment of polycythemia vera. N. Engl. J. Med. 372, 426–435 (2015).

    PubMed  PubMed Central  Google Scholar 

  193. Passamonti, F. et al. Ruxolitinib for the treatment of inadequately controlled polycythaemia vera without splenomegaly (RESPONSE-2): a randomised, open-label, phase 3b study. Lancet Oncol. 18, 88–99 (2017).

    CAS  PubMed  Google Scholar 

  194. Komrokji, R. S. et al. Results of a phase 2 study of pacritinib (SB1518), a JAK2/JAK2(V617F) inhibitor, in patients with myelofibrosis. Blood 125, 2649–2655 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Verstovsek, S. et al. Phase 1/2 study of pacritinib, a next generation JAK2/FLT3 inhibitor, in myelofibrosis or other myeloid malignancies. J. Hematol. Oncol. 9, 137 (2016).

    PubMed  PubMed Central  Google Scholar 

  196. Hedvat, M. et al. The JAK2 inhibitor AZD1480 potently blocks Stat3 signaling and oncogenesis in solid tumors. Cancer Cell 16, 487–497 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Xin, H. et al. Antiangiogenic and antimetastatic activity of JAK inhibitor AZD1480. Cancer Res. 71, 6601–6610 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  198. Sen, M. et al. JAK kinase inhibition abrogates STAT3 activation and head and neck squamous cell carcinoma tumor growth. Neoplasia 17, 256–264 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  199. Lee, J. H. et al. The Janus kinases inhibitor AZD1480 attenuates growth of small cell lung cancers in vitro and in vivo. Clin. Cancer Res. 19, 6777–6786 (2013).

    CAS  PubMed  Google Scholar 

  200. Tavallai, M., Booth, L., Roberts, J. L., Poklepovic, A. & Dent, P. Rationally repurposing ruxolitinib (Jakafi®) as a solid tumor therapeutic. Front. Oncol. 6, 142 (2016).

    PubMed  PubMed Central  Google Scholar 

  201. Plimack, E. R. et al. AZD1480: a phase I study of a novel JAK2 inhibitor in solid tumors. Oncologist 18, 819–820 (2013).

    PubMed  PubMed Central  Google Scholar 

  202. Loh, M. L. et al. A phase 1 dosing study of ruxolitinib in children with relapsed or refractory solid tumors, leukemias, or myeloproliferative neoplasms: a Children's Oncology Group phase 1 consortium study (ADVL1011). Pediatr. Blood Cancer 62, 1717–1724 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Hurwitz, H. I. et al. Double-blind, phase II study of ruxolitinib or placebo in combination with capecitabine in patients with metastatic pancreatic cancer for whom therapy with gemcitabine has failed. J. Clin. Oncol. 33, 4039–4047 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Wong, A. L. A. et al. Do STAT3 inhibitors have potential in the future for cancer therapy? Expert Opin. Investig. Drugs 26, 883–887 (2017).

    CAS  PubMed  Google Scholar 

  205. Turkson, J. et al. Phosphotyrosyl peptides block Stat3-mediated DNA binding activity, gene regulation, and cell transformation. J. Biol. Chem. 276, 45443–45455 (2001).

    CAS  PubMed  Google Scholar 

  206. Turkson, J. et al. Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. Mol. Cancer Ther. 3, 261–269 (2004).

    CAS  PubMed  Google Scholar 

  207. Mandal, P. K. et al. Potent and selective phosphopeptide mimetic prodrugs targeted to the Src homology 2 (SH2) domain of signal transducer and activator of transcription 3. J. Med. Chem. 54, 3549–3563 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Auzenne, E. J. et al. A phosphopeptide mimetic prodrug targeting the SH2 domain of Stat3 inhibits tumor growth and angiogenesis. J. Exp. Ther. Oncol. 10, 155–162 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Schust, J., Sperl, B., Hollis, A., Mayer, T. U. & Berg, T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. Chem. Biol. 13, 1235–1242 (2006).

    CAS  PubMed  Google Scholar 

  210. Siddiquee, K. et al. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc. Natl Acad. Sci. USA 104, 7391–7396 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Song, H., Wang, R., Wang, S. & Lin, J. A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc. Natl Acad. Sci. USA 102, 4700–4705 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Zhang, X. et al. Orally bioavailable small-molecule inhibitor of transcription factor Stat3 regresses human breast and lung cancer xenografts. Proc. Natl Acad. Sci. USA 109, 9623–9628 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Chen, C. L. et al. Signal transducer and activator of transcription 3 is involved in cell growth and survival of human rhabdomyosarcoma and osteosarcoma cells. BMC Cancer 7, 111 (2007).

    PubMed  PubMed Central  Google Scholar 

  214. Fuh, B. et al. LLL-3 inhibits STAT3 activity, suppresses glioblastoma cell growth and prolongs survival in a mouse glioblastoma model. Br. J. Cancer 100, 106–112 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Hussain, S. F. et al. A novel small molecule inhibitor of signal transducers and activators of transcription 3 reverses immune tolerance in malignant glioma patients. Cancer Res. 67, 9630–9636 (2007).

    CAS  PubMed  Google Scholar 

  216. Pan, Y., Zhou, F., Zhang, R. & Claret, F. X. Stat3 inhibitor Stattic exhibits potent antitumor activity and induces chemo- and radio-sensitivity in nasopharyngeal carcinoma. PLoS ONE 8, e54565 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Zhang, X. et al. A novel inhibitor of STAT3 homodimerization selectively suppresses STAT3 activity and malignant transformation. Cancer Res. 73, 1922–1933 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Zhang, X. et al. A novel small-molecule disrupts Stat3 SH2 domain-phosphotyrosine interactions and Stat3-dependent tumor processes. Biochem. Pharmacol. 79, 1398–1409 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Ashizawa, T. et al. Antitumor activity of a novel small molecule STAT3 inhibitor against a human lymphoma cell line with high STAT3 activation. Int. J. Oncol. 38, 1245–1252 (2011).

    CAS  PubMed  Google Scholar 

  220. Matsuno, K. et al. Identification of a new series of STAT3 inhibitors by virtual screening. ACS Med. Chem. Lett. 1, 371–375 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Chen, H. et al. Fragment-based drug design and identification of HJC0123, a novel orally bioavailable STAT3 inhibitor for cancer therapy. Eur. J. Med. Chem. 62, 498–507 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Brambilla, L. et al. Hitting the right spot: mechanism of action of OPB-31121, a novel and potent inhibitor of the signal transducer and activator of transcription 3 (STAT3). Mol. Oncol. 9, 1194–1206 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Hayakawa, F. et al. A novel STAT inhibitor, OPB-31121, has a significant antitumor effect on leukemia with STAT-addictive oncokinases. Blood Cancer J. 3, e166 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Kim, M. J. et al. OPB-31121, a novel small molecular inhibitor, disrupts the JAK2/STAT3 pathway and exhibits an antitumor activity in gastric cancer cells. Cancer Lett. 335, 145–152 (2013).

    CAS  PubMed  Google Scholar 

  225. Bendell, J. C. et al. Phase 1, open-label, dose-escalation, and pharmacokinetic study of STAT3 inhibitor OPB-31121 in subjects with advanced solid tumors. Cancer Chemother. Pharmacol. 74, 125–130 (2014).

    CAS  PubMed  Google Scholar 

  226. Oh, D. Y. et al. Phase I study of OPB-31121, an oral STAT3 inhibitor, in patients with advanced solid tumors. Cancer Res. Treat. 47, 607–615 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Okusaka, T. et al. Phase 1 and pharmacological trial of OPB-31121, a signal transducer and activator of transcription-3 inhibitor, in patients with advanced hepatocellular carcinoma. Hepatol. Res. 45, 1283–1291 (2015).

    CAS  PubMed  Google Scholar 

  228. Wong, A. L. et al. Phase I and biomarker study of OPB-51602, a novel signal transducer and activator of transcription (STAT) 3 inhibitor, in patients with refractory solid malignancies. Ann. Oncol. 26, 998–1005 (2015).

    CAS  PubMed  Google Scholar 

  229. Ogura, M. et al. Phase I study of OPB-51602, an oral inhibitor of signal transducer and activator of transcription 3, in patients with relapsed/refractory hematological malignancies. Cancer Sci. 106, 896–901 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Bharadwaj, U. et al. Small-molecule inhibition of STAT3 in radioresistant head and neck squamous cell carcinoma. Oncotarget 7, 26307–26330 (2016).

    PubMed  PubMed Central  Google Scholar 

  231. Xi, S., Gooding, W. E. & Grandis, J. R. In vivo antitumor efficacy of STAT3 blockade using a transcription factor decoy approach: implications for cancer therapy. Oncogene 24, 970–979 (2005).

    CAS  PubMed  Google Scholar 

  232. Shen, J., Li, R. & Li, G. Inhibitory effects of decoy-ODN targeting activated STAT3 on human glioma growth in vivo. In Vivo 23, 237–243 (2009).

    CAS  PubMed  Google Scholar 

  233. Sun, Z., Yao, Z., Liu, S., Tang, H. & Yan, X. An oligonucleotide decoy for Stat3 activates the immune response of macrophages to breast cancer. Immunobiology 211, 199–209 (2006).

    CAS  PubMed  Google Scholar 

  234. Zhang, X., Zhang, J., Wang, L., Wei, H. & Tian, Z. Therapeutic effects of STAT3 decoy oligodeoxynucleotide on human lung cancer in xenograft mice. BMC Cancer 7, 149 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  235. Zhang, X. et al. Inhibitory effects of STAT3 decoy oligodeoxynucleotides on human epithelial ovarian cancer cell growth in vivo. Int. J. Mol. Med. 32, 623–628 (2013).

    CAS  PubMed  Google Scholar 

  236. Chan, K. S. et al. Disruption of Stat3 reveals a critical role in both the initiation and the promotion stages of epithelial carcinogenesis. J. Clin. Invest. 114, 720–728 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Zhang, Q. et al. Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood 127, 1687–1700 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Sen, M. et al. First-in-human trial of a STAT3 decoy oligonucleotide in head and neck tumors: implications for cancer therapy. Cancer Discov. 2, 694–705 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Sen, M. et al. Systemic administration of a cyclic signal transducer and activator of transcription 3 (STAT3) decoy oligonucleotide inhibits tumor growth without inducing toxicological effects. Mol. Med. 20, 46–56 (2014).

    PubMed  Google Scholar 

  240. Hong, D. et al. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci. Transl Med. 7, 314ra185 (2015).

    PubMed  PubMed Central  Google Scholar 

  241. Burel, S. A. et al. Preclinical evaluation of the toxicological effects of a novel constrained ethyl modified antisense compound targeting signal transducer and activator of transcription 3 in mice and cynomolgus monkeys. Nucleic Acid. Ther. 23, 213–227 (2013).

    CAS  PubMed  Google Scholar 

  242. Odate, S. et al. Inhibition of STAT3 with the generation 2.5 antisense oligonucleotide, AZD9150, decreases neuroblastoma tumorigenicity and increases chemosensitivity. Clin. Cancer Res. 23, 1771–1784 (2017).

    CAS  PubMed  Google Scholar 

  243. Okiyama, N. & Tanaka, R. Varied immuno-related adverse events induced by immune-check point inhibitors — Nivolumab-associated psoriasiform dermatitis related with increased serum level of interleukin-6 [Japanese]. Nihon Rinsho Meneki Gakkai Kaishi 40, 95–101 (2017).

    CAS  PubMed  Google Scholar 

  244. Tanaka, R. et al. Serum level of interleukin-6 is increased in nivolumab-associated psoriasiform dermatitis and tumor necrosis factor-alpha is a biomarker of nivolumab recativity. J. Dermatol. Sci. 86, 71–73 (2017).

    CAS  PubMed  Google Scholar 

  245. Rotz, S. J. et al. Severe cytokine release syndrome in a patient receiving PD-1-directed therapy. Pediatr. Blood Cancer 64, e26642 (2017).

    Google Scholar 

  246. Kim, S. T. et al. Successful treatment of arthritis induced by checkpoint inhibitors with tocilizumab: a case series. Ann. Rheum. Dis. 76, 2061–2064 (2017).

    PubMed  Google Scholar 

  247. Uemura, M. et al. Selective inhibition of autoimmune exacerbation while preserving the anti-tumor clinical benefit using IL-6 blockade in a patient with advanced melanoma and Crohn's disease: a case report. J. Hematol. Oncol. 9, 81 (2016).

    PubMed  PubMed Central  Google Scholar 

  248. Austin, J. W., Lu, P., Majumder, P., Ahmed, R. & Boss, J. M. STAT3, STAT4, NFATc1, and CTCF regulate PD-1 through multiple novel regulatory regions in murine T cells. J. Immunol. 192, 4876–4886 (2014).

    CAS  PubMed  Google Scholar 

  249. Thorn, M. et al. Tumor-associated GM-CSF overexpression induces immunoinhibitory molecules via STAT3 in myeloid-suppressor cells infiltrating liver metastases. Cancer Gene Ther. 23, 188–198 (2016).

    CAS  PubMed  Google Scholar 

  250. Zhang, N. et al. The EGFR pathway is involved in the regulation of PD-L1 expression via the IL-6/JAK/STAT3 signaling pathway in EGFR-mutated non-small cell lung cancer. Int. J. Oncol. 49, 1360–1368 (2016).

    CAS  PubMed  Google Scholar 

  251. Bu, L. L. et al. STAT3 Induces Immunosuppression by Upregulating PD-1/PD-L1 in HNSCC. J. Dent. Res. 96, 1027–1034 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  252. Atsaves, V. et al. PD-L1 is commonly expressed and transcriptionally regulated by STAT3 and MYC in ALK-negative anaplastic large-cell lymphoma. Leukemia 31, 1633–1637 (2017).

    CAS  PubMed  Google Scholar 

  253. Mace, T. A. et al. IL-6 and PD-L1 antibody blockade combination therapy reduces tumour progression in murine models of pancreatic cancer. Gut 67, 320–332 (2018).

    CAS  PubMed  Google Scholar 

  254. Liu, H., Shen, J. & Lu, K. IL-6 and PD-L1 blockade combination inhibits hepatocellular carcinoma cancer development in mouse model. Biochem. Biophys. Res. Commun. 486, 239–244 (2017).

    CAS  PubMed  Google Scholar 

  255. Lu, C., Talukder, A., Savage, N. M., Singh, N. & Liu, K. JAK-STAT-mediated chronic inflammation impairs cytotoxic T lymphocyte activation to decrease anti-PD-1 immunotherapy efficacy in pancreatic cancer. Oncoimmunology 6, e1291106 (2017).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by grants from the US NIH (R01 DE24728 and P50 CA097190 to D.E.J., F31 DE026951 to R.A.O., R01 DE023685 and P50 CA097190 to J.R.G.) and the American Cancer Society (CRP-13-308-06-COUN to J.R.G.).

Author information

Authors and Affiliations

Authors

Contributions

All authors made a substantial contribution to all aspects of the preparation of this manuscript.

Corresponding author

Correspondence to Jennifer R. Grandis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, D., O'Keefe, R. & Grandis, J. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15, 234–248 (2018). https://doi.org/10.1038/nrclinonc.2018.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2018.8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing