Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Drug resistance in metastatic castration-resistant prostate cancer

Abstract

Docetaxel in combination with prednisone is the standard of care in men with symptomatic castration-resistant prostate cancer (CRPC). However, a substantial proportion of men with CRPC do not benefit from docetaxel or other systemic therapy and those who do benefit invariably progress and die of (or with) prostate cancer. Resistance to chemotherapy in metastatic CRPC is a result of cellular mechanisms of drug resistance intrinsic to prostate cancer and general mechanisms common to different tumor types. Continued signaling from the androgen receptor, activation of oncogenic survival pathways by various receptor tyrosine kinases and crosstalk between the androgen receptor and these oncogenic survival pathways are hallmarks of progression of CRPC. General mechanisms of drug resistance include the existence of subpopulations of cancer cells with cellular mechanisms of resistance, resistance related to interactions between prostate cancer cells and their surrounding microenvironment and impaired drug delivery to the cancer cells. New therapeutics targeting these mechanisms are under evaluation in clinical trials. Drug resistance in metastatic CRPC is multifactorial and complex and development of new medical therapies remains challenging.

Key Points

  • Although the combination of docetaxel and prednisone prolongs survival and improves the quality of life of patients with metastatic castration-resistant prostate cancer (CRPC), the disease invariably progresses

  • Resistance to docetaxel and other types of systemic therapy can develop owing to mechanisms intrinsic to the biology of prostate cancer and/or general mechanisms of drug resistance common to different tumor types

  • Cellular hallmarks of CRPC include continued signaling by the androgen receptor (AR), activation of various pathways associated with proliferation and survival, and crosstalk between the AR and these pathways

  • The existence of subpopulations of cancer cells with cellular mechanisms of resistance, interactions between cancer cells and their surrounding microenvironment, and impaired drug distribution can contribute to drug resistance in prostate cancer

  • New agents that target the critical cellular mechanisms of drug resistance are the most promising in metastatic CRPC; proof-of-principle clinical studies have shown activity for new agents targeting signaling from the AR and cellular mechanisms of resistance to taxanes

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms of resistance to docetaxel in metastatic prostate cancer.
Figure 2: Drug resistance due to continued or upregulated signaling from the AR.
Figure 3: Representation of cancer cells and the ECM surrounding a capillary.
Figure 4: Distribution of doxorubicin in the prostate tumor PC3 xenograft.
Figure 5: Cellular mechanisms of resistance to taxanes.

Similar content being viewed by others

References

  1. Tredan, O., Galmarini, C. M., Patel, K. & Tannock, I. F. Drug resistance and the solid tumor microenvironment. J. Natl Cancer Inst. 99, 1441–1454 (2007).

    CAS  PubMed  Google Scholar 

  2. Knight, Z. A., Lin, H. & Shokat, K. M. Targeting the cancer kinome through polypharmacology Nat. Rev. Cancer 10, 130–137 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Prostate Cancer Trialists' Collaborative Group. Lancet 355, 1491–1498 (2000).

  4. Eisenberger, M. A. & Walsh, P. C. Early androgen deprivation for prostate cancer? N. Engl. J. Med. 341, 1837–1838 (1999).

    CAS  PubMed  Google Scholar 

  5. Berthold, D. R. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J. Clin. Oncol. 26, 242–245 (2008).

    CAS  PubMed  Google Scholar 

  6. Tannock, I. F. et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N. Engl. J. Med. 351, 1502–1512 (2004).

    CAS  PubMed  Google Scholar 

  7. Berthold, D. R., Pond, G. R., de Wit, R., Eisenberger, M. & Tannock, I. F. Survival and PSA response of patients in the TAX 327 study who crossed over to receive docetaxel after mitoxantrone or vice versa. Ann. Oncol. 19, 1749–1753 (2008).

    CAS  PubMed  Google Scholar 

  8. Craft, N., Shostak, Y., Carey, M. & Sawyers, C. L. A mechanism for hormone-independent prostate cancer through modulation of androgen receptor signaling by the HER-2/neu tyrosine kinase. Nat. Med. 5, 280–285 (1999).

    CAS  PubMed  Google Scholar 

  9. Zhu, M. L. & Kyprianou, N. Androgen receptor and growth factor signaling cross-talk in prostate cancer cells. Endocr. Relat. Cancer 15, 841–849 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Feldman, B. J. & Feldman, D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer 1, 34–45 (2001).

    CAS  PubMed  Google Scholar 

  12. Gelmann, E. P. Molecular biology of the androgen receptor. J. Clin. Oncol. 20, 3001–3015 (2002).

    CAS  PubMed  Google Scholar 

  13. Holzbeierlein, J. et al. Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am. J. Pathol. 164, 217–227 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shah, R. B. et al. Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res. 64, 9209–9216 (2004).

    CAS  PubMed  Google Scholar 

  15. Tomlins, S. A. et al. Integrative molecular concept modeling of prostate cancer progression. Nat. Genet. 39, 41–51 (2007).

    CAS  PubMed  Google Scholar 

  16. Chen, C. D. et al. Molecular determinants of resistance to antiandrogen therapy. Nat. Med. 10, 33–39 (2004).

    PubMed  Google Scholar 

  17. Tamura, K. et al. Molecular features of hormone-refractory prostate cancer cells by genome-wide gene expression profiles. Cancer Res. 67, 5117–5125 (2007).

    CAS  PubMed  Google Scholar 

  18. Koivisto, P. et al. Androgen receptor gene amplification: a possible molecular mechanism for androgen deprivation therapy failure in prostate cancer. Cancer Res. 57, 314–319 (1997).

    CAS  PubMed  Google Scholar 

  19. Stanbrough, M. et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res. 66, 2815–2825 (2006).

    CAS  PubMed  Google Scholar 

  20. Montgomery, R. B. et al. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res. 68, 4447–4454 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gregory, C. W., Johnson, R. T. Jr, Mohler, J. L., French, F. S. & Wilson, E. M. Androgen receptor stabilization in recurrent prostate cancer is associated with hypersensitivity to low androgen. Cancer Res. 61, 2892–2898 (2001).

    CAS  PubMed  Google Scholar 

  22. Brooke, G. N. & Bevan, C. L. The role of androgen receptor mutations in prostate cancer progression. Curr. Genomics 10, 18–25 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tremblay, A., Tremblay, G. B., Labrie, F. & Giguere, V. Ligand-independent recruitment of SRC-1 to estrogen receptor beta through phosphorylation of activation function AF-1. Mol. Cell. 3, 513–519 (1999).

    CAS  PubMed  Google Scholar 

  24. Xu, J., Wu, R. C. & O'Malley, B. W. Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat. Rev. Cancer 9, 615–630 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, G., Wang, J. & Sadar, M. D. Crosstalk between the androgen receptor and beta-catenin in castrate-resistant prostate cancer. Cancer Res. 68, 9918–9927 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu, L., Birle, D. C. & Tannock, I. F. Effects of the mammalian target of rapamycin inhibitor CCI-779 used alone or with chemotherapy on human prostate cancer cells and xenografts. Cancer Res. 65, 2825–2831 (2005).

    CAS  PubMed  Google Scholar 

  27. Boldt, S., Weidle, U. H. & Kolch, W. The role of MAPK pathways in the action of chemotherapeutic drugs. Carcinogenesis 23, 1831–1838 (2002).

    CAS  PubMed  Google Scholar 

  28. Zelivianski, S. et al. ERK inhibitor PD98059 enhances docetaxel-induced apoptosis of androgen-independent human prostate cancer cells. Int. J. Cancer 107, 478–485 (2003).

    CAS  PubMed  Google Scholar 

  29. Domingo-Domenech, J. et al. Interleukin 6, a nuclear factor-kappaB target, predicts resistance to docetaxel in hormone-independent prostate cancer and nuclear factor-kappaB inhibition by PS-1145 enhances docetaxel antitumor activity. Clin. Cancer Res. 12, 5578–5586 (2006).

    CAS  PubMed  Google Scholar 

  30. Mimeault, M. et al. Combined targeting of epidermal growth factor receptor and hedgehog signaling by gefitinib and cyclopamine cooperatively improves the cytotoxic effects of docetaxel on metastatic prostate cancer cells. Mol. Cancer Ther. 6, 967–678 (2007).

    CAS  PubMed  Google Scholar 

  31. Banerjee, S. et al. In vitro and in vivo molecular evidence for better therapeutic efficacy of ABT-627 and taxotere combination in prostate cancer. Cancer Res. 67, 3818–3826 (2007).

    CAS  PubMed  Google Scholar 

  32. Lo Nigro, C. et al. The combination of docetaxel and the somatostatin analogue lanreotide on androgen-independent docetaxel-resistant prostate cancer: experimental data. BJU Int. 102, 622–627 (2008).

    CAS  PubMed  Google Scholar 

  33. Raffo, A. J. et al. Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res. 55, 4438–4445 (1995).

    CAS  PubMed  Google Scholar 

  34. Zhang, M., Latham, D. E., Delaney, M. A. & Chakravarti, A. Survivin mediates resistance to antiandrogen therapy in prostate cancer. Oncogene 24, 2474–2482 (2005).

    CAS  PubMed  Google Scholar 

  35. Yang, C. C. et al. Bcl-xL mediates a survival mechanism independent of the phosphoinositide 3-kinase/Akt pathway in prostate cancer cells. J. Biol. Chem. 278, 25872–25878 (2003).

    CAS  PubMed  Google Scholar 

  36. Zoubeidi, A., Chi, K. & Gleave, M. Targeting the cytoprotective chaperone, clusterin, for treatment of advanced cancer. Clin. Cancer Res. 16, 1088–1093 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yamanaka, K. et al. Induction of apoptosis and enhancement of chemosensitivity in human prostate cancer LNCaP cells using bispecific antisense oligonucleotide targeting Bcl-2 and Bcl-xL genes. BJU Int. 97, 1300–1308 (2006).

    CAS  PubMed  Google Scholar 

  38. Pchejetski, D. et al. Chemosensitizing effects of sphingosine kinase-1 inhibition in prostate cancer cell and animal models. Mol. Cancer Ther. 7, 1836–1845 (2008).

    CAS  PubMed  Google Scholar 

  39. Mumenthaler, S. M. et al. Pharmacologic inhibition of Pim kinases alters prostate cancer cell growth and resensitizes chemoresistant cells to taxanes. Mol. Cancer Ther. 8, 2882–2893 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Desgrosellier, J. S. & Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer 10, 9–22 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Brown, J. M. & Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 4, 437–447 (2004).

    CAS  PubMed  Google Scholar 

  42. Primeau, A. J., Rendon, A., Hedley, D., Lilge, L. & Tannock, I. F. The distribution of the anticancer drug doxorubicin in relation to blood vessels in solid tumors. Clin. Cancer Res. 11, 8782–8788 (2005).

    CAS  PubMed  Google Scholar 

  43. Kyle, A. H., Huxham, L. A., Yeoman, D. M. & Minchinton, A. I. Limited tissue penetration of taxanes: a mechanism for resistance in solid tumors. Clin. Cancer Res. 13, 2804–2810 (2007).

    CAS  PubMed  Google Scholar 

  44. Heldin, C. H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure—an obstacle in cancer therapy. Nat. Rev. Cancer 4, 806–813 (2004).

    CAS  PubMed  Google Scholar 

  45. Semenza, G. L. Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene 29, 625–634 (2010).

    CAS  PubMed  Google Scholar 

  46. Kasper, S. Exploring the origins of the normal prostate and prostate cancer stem cell. Stem Cell Rev. 4, 193–201 (2008).

    CAS  PubMed  Google Scholar 

  47. Maitland, N. J. & Collins, A. T. Prostate cancer stem cells: a new target for therapy. J. Clin. Oncol. 26, 2862–2870 (2008).

    PubMed  Google Scholar 

  48. Visvader, J. E. & Lindeman, G. J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer 8, 755–768 (2008).

    CAS  PubMed  Google Scholar 

  49. Komiya, A. et al. Neuroendocrine differentiation in the progression of prostate cancer. Int. J. Urol. 16, 37–44 (2009).

    PubMed  Google Scholar 

  50. Meads, M. B., Gatenby, R. A. & Dalton, W. S. Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat. Rev. Cancer 9, 665–674 (2009).

    CAS  PubMed  Google Scholar 

  51. Kobayashi, H. et al. Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc. Natl Acad. Sci. USA 90, 3294–3298 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Logothetis, C. J., Navone, N. M. & Lin, S. H. Understanding the biology of bone metastases: key to the effective treatment of prostate cancer. Clin. Cancer Res. 14, 1599–1602 (2008).

    CAS  PubMed  Google Scholar 

  53. Logothetis, C. J. & Lin, S. H. Osteoblasts in prostate cancer metastasis to bone. Nat. Rev. Cancer 5, 21–28 (2005).

    CAS  PubMed  Google Scholar 

  54. Zhang, J., Lu, Y. & Pienta, K. J. Multiple roles of chemokine (C-C Motif) ligand 2 in promoting prostate cancer growth. J. Natl Cancer Inst. 102, 522–528 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Qian, D. Z. et al. CCL2 is induced by chemotherapy and protects prostate cancer cells from docetaxel-induced cytotoxicity. Prostate 70, 433–442 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Fizazi, K. The role of Src in prostate cancer. Ann. Oncol. 18, 1765–1773 (2007).

    CAS  PubMed  Google Scholar 

  57. Kavallaris, M. Microtubules and resistance to tubulin-binding agents. Nat. Rev. Cancer 10, 194–204 (2010).

    CAS  PubMed  Google Scholar 

  58. Haldar, S., Basu, A. & Croce, C. M. Bcl2 is the guardian of microtubule integrity. Cancer Res. 57, 229–233 (1997).

    CAS  PubMed  Google Scholar 

  59. Gottesman, M. M., Fojo, T. & Bates, S. E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2, 48–58 (2002).

    CAS  PubMed  Google Scholar 

  60. Berrieman, H. K., Lind, M. J. & Cawkwell, L. Do beta-tubulin mutations have a role in resistance to chemotherapy? Lancet Oncol. 5, 158–164 (2004).

    CAS  PubMed  Google Scholar 

  61. Seve, P. & Dumontet, C. Is class III beta-tubulin a predictive factor in patients receiving tubulin-binding agents? Lancet Oncol. 9, 168–175 (2008).

    CAS  PubMed  Google Scholar 

  62. Verrills, N. M. et al. Alterations in gamma-actin and tubulin-targeted drug resistance in childhood leukemia. J. Natl Cancer Inst. 98, 1363–1374 (2006).

    CAS  PubMed  Google Scholar 

  63. Bhalla, K. N. Microtubule-targeted anticancer agents and apoptosis. Oncogene 22, 9075–9086 (2003).

    CAS  PubMed  Google Scholar 

  64. Attard, G. et al. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol. 26, 4563–4571 (2008).

    CAS  PubMed  Google Scholar 

  65. Ryan, C. et al. Phase II multicenter study of chemotherapy (chemo)-naive castration-resistant prostate cancer (CRPC) not exposed to ketoconazole (keto), treated with abiraterone acetate (AA) plus prednisone [abstract]. J. Clin. Oncol. 27 (Suppl.), a5046 (2009).

    Google Scholar 

  66. Danila, D. C. et al. Phase II multicenter study of abiraterone acetate plus prednisone therapy in patients with docetaxel-treated castration-resistant prostate cancer. J. Clin. Oncol. 28, 1496–1501 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Scher, H. I. et al. Phase I-II study of MDV3100 in castration-resistant prostate cancer (CRPC) [abstract]. J. Clin. Oncol. 27, a151 (2009).

    Google Scholar 

  69. Attard, G., Cooper, C. S. & de Bono, J. S. Steroid hormone receptors in prostate cancer: a hard habit to break? Cancer Cell 16, 458–462 (2009).

    CAS  PubMed  Google Scholar 

  70. Mendiratta, P. et al. Genomic strategy for targeting therapy in castration-resistant prostate cancer. J. Clin. Oncol. 27, 2022–2029 (2009).

    CAS  PubMed  Google Scholar 

  71. Whang, J. E. et al. A phase II trial of lapatinib in hormone refractory prostate cancer [abstract]. J. Clin. Oncol. 26 (15S), a16037 (2008).

    Google Scholar 

  72. Gross, M. et al. A phase II trial of docetaxel and erlotinib as first-line therapy for elderly patients with androgen-independent prostate cancer. BMC Cancer 7, 142 (2007).

    PubMed  PubMed Central  Google Scholar 

  73. Gravis, G. et al. Results from a monocentric phase II trial of erlotinib in patients with metastatic prostate cancer. Ann. Oncol. 19, 1624–1628 (2008).

    CAS  PubMed  Google Scholar 

  74. Canil, C. M. et al. Randomized phase II study of two doses of gefitinib in hormone-refractory prostate cancer: a trial of the National Cancer Institute of Canada-Clinical Trials Group. J. Clin. Oncol. 23, 455–460 (2005).

    CAS  PubMed  Google Scholar 

  75. de Bono, J. S. et al. Open-label phase II study evaluating the efficacy and safety of two doses of pertuzumab in castrate chemotherapy-naive patients with hormone-refractory prostate cancer. J. Clin. Oncol. 25, 257–262 (2007).

    CAS  PubMed  Google Scholar 

  76. De Bono, J. S. et al. Randomized phase II study of CNTO 328 (C), an anti-IL-6 monoclonal antibody, in combination with mitoxantrone (M) versus M alone in metastatic castration-resistant prostate cancer (CRPC) [abstract]. Genitourinary Cancer Symposium a86 (2010).

  77. Sternberg, C. N. et al. Docetaxel plus oblimersen sodium (Bcl-2 antisense oligonucleotide): an EORTC multicenter, randomized phase II study in patients with castration-resistant prostate cancer. Ann. Oncol. 20, 1264–1269 (2009).

    CAS  PubMed  Google Scholar 

  78. Saad, F. et al. A phase II randomized study of custirsen (OGX-011) combination therapy in patients with poor-risk hormone refractory prostate cancer who relapsed on or within six months of 1st-line docetaxel therapy [abstract]. J. Clin. Oncol. 26, a5002 (2008).

    Google Scholar 

  79. Jain, R. K. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005).

    CAS  PubMed  Google Scholar 

  80. Ning, Y. M. et al. Phase II trial of bevacizumab, thalidomide, docetaxel, and prednisone in patients with metastatic castration-resistant prostate cancer. J. Clin. Oncol. 28, 2070–2076 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dahut, W. L. et al. Randomized phase II trial of docetaxel plus thalidomide in androgen-independent prostate cancer. J. Clin. Oncol. 22, 2532–2539 (2004).

    CAS  PubMed  Google Scholar 

  82. Sonpavde, G. et al. Sunitinib malate for metastatic castration-resistant prostate cancer following docetaxel-based chemotherapy. Ann. Oncol. 21, 319–324 (2010).

    CAS  PubMed  Google Scholar 

  83. Kelly, W. K. et al. A randomized double-blind placebo controlled phase III trial comparing docetaxel, prednisone and placebo with docetaxel, prednisone and bevacizumab in men with metastatic castration-resistant prostate cancer: survival results of CALGB 90401 [abstract]. J. Clin. Oncol. 28 (Suppl.), a4511 (2010).

    Google Scholar 

  84. Carducci, M. A. et al. A phase 3 randomized controlled trial of the efficacy and safety of atrasentan in men with metastatic hormone-refractory prostate cancer. Cancer 110, 1959–1966 (2007).

    CAS  PubMed  Google Scholar 

  85. Tu, S. M. et al. Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised phase II trial. Lancet 357, 336–341 (2001).

    CAS  PubMed  Google Scholar 

  86. Fizazi, K. et al. Phase II trial of consolidation docetaxel and samarium-153 in patients with bone metastases from castration-resistant prostate cancer. J. Clin. Oncol. 27, 2429–2435 (2009).

    CAS  PubMed  Google Scholar 

  87. Nisson, S. et al. A randomized, placebo-controlled, phase 2 study of radium-223 in the treatment of metastatic hormone refractory prostate cancer (HRPC). Twelve months follow-up data [abstract]. Prostate Cancer Symposium a259, (2007).

  88. Machiels, J. P. et al. Prospective randomized study comparing docetaxel, estramustine, and prednisone with docetaxel and prednisone in metastatic hormone-refractory prostate cancer. J. Clin. Oncol. 26, 5261–5268 (2008).

    CAS  PubMed  Google Scholar 

  89. Garmey, E. G., Sartor, O., Halabi, S. & Vogelzang, N. J. Second-line chemotherapy for advanced hormone-refractory prostate cancer. Clin. Adv. Hematol. Oncol. 6, 118–122, 127–132 (2008).

    PubMed  Google Scholar 

  90. Sternberg, C. N. et al. Multinational, double-blind, phase III study of prednisone and either satraplatin or placebo in patients with castrate-refractory prostate cancer progressing after prior chemotherapy: the SPARC trial. J. Clin. Oncol. 27, 5431–5438 (2009).

    CAS  PubMed  Google Scholar 

  91. Sartor, A. O. et al. Cabazitaxel or mitoxantrone with prednisone in patients with metastatic castration-resistant prostate cancer (mCRPC) previously treated with docetaxel: final results of a multinational phase III trial (TROPIC) [abstract]. Genitourinary Cancer Symposium a9 (2010).

  92. Lee, J. J. & Kelly, W. K. Epothilones: tubulin polymerization as a novel target for prostate cancer therapy. Nat. Clin. Pract. Oncol. 6, 85–92 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the MedscapeCME-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching the data for the article, discussions of the content, writing the article and editing the manuscript before submission.

Corresponding author

Correspondence to Ian F. Tannock.

Ethics declarations

Competing interests

I. F. Tannock has acted as a consultant for and received research support from Sanofi-Aventis. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seruga, B., Ocana, A. & Tannock, I. Drug resistance in metastatic castration-resistant prostate cancer. Nat Rev Clin Oncol 8, 12–23 (2011). https://doi.org/10.1038/nrclinonc.2010.136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing