Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Live or let die: the cell's response to p53

Key Points

  • p53 is a tumour-suppressor protein that induces apoptotic cell death in response to oncogenic stress. Malignant progression is dependent on loss of p53 function, either through mutation in the TP53 gene (which encodes p53) itself or by defects in the signalling pathways that are upstream or downstream of p53.

  • Mutations in TP53 occur in about half of all human cancers, almost always resulting in the expression of a mutant p53 protein that has acquired transforming activity.

  • p53-induced apoptosis depends on the ability of p53 to activate gene expression, although transcriptionally independent activities of p53 can also contribute to the apoptotic response.

  • The apoptotic and cell-cycle arrest activities of p53 can be separated, and apoptotic cofactors that play a specific role in allowing p53-induced death are being identified.

  • Regulation of the apoptotic function of p53 is associated with selective activation of apoptotic target genes. Cofactors that specifically contribute to p53-mediated activation of apoptotic target genes include JMY, ASPP and the other p53-family members p63 and p73.

  • Phosphorylation of p53 regulates its ability to activate the expression of apoptotic target genes, and other post-translational modifications such as acetylation might also have a role.

  • In tumours that retain wild-type p53, the apoptotic response might be hindered by defects in the apoptotic cofactors. These, therefore, represent additional targets for the design of therapeutics that are aimed at reactivating p53-mediated apoptosis in cancer cells.

Abstract

Compared with many normal tissues, cancer cells are highly sensitized to apoptotic signals, and survive only because they have acquired lesions — such as loss of p53 — that prevent or impede cell death. We are now beginning to understand the complex mechanisms that regulate whether or not a cell dies in response to p53 — insights that will ultimately contribute to the development of therapeutic strategies to repair the apoptotic p53 response in cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The p53 response.
Figure 2: Loss of p53 activity in cancers.
Figure 3: p53 structure and location of tumour-associated mutations.
Figure 4: Several apoptotic pathways are activated by p53.
Figure 5: Model for the regulation of the choice of response to p53.

Similar content being viewed by others

References

  1. Evan, G. I. & Vousden, K. H. Proliferation, cell cycle and apoptosis in cancer. Nature 411, 342–348 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Zornig, M., Hueber, A., Baum, W. & Evan, G. Apoptosis regulators and their role in tumorigenesis. Biochim. Biophys. Acta 1551, F1–F37 (2001).

    CAS  PubMed  Google Scholar 

  3. Irwin, M. S. & Kaelin, W. G. p53 family update: p73 and p63 develop their own identities. Cell Growth Differ. 12, 337–349 (2001).

    CAS  PubMed  Google Scholar 

  4. Balint, E. & Vousden, K. H. Activation and activities of the p53 tumor suppressor protein. Br. J. Cancer 85, 1813–1823 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  5. Lomax, M. E. et al. Two functional assays employed to detect an unusual mutation in the oligomerisation domain of p53 in a Li–Fraumeni-like family. Oncogene 14, 1869–1874 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. DiGiammarino, E. L. et al. A novel mechanism of tumorigenesis involving pH-dependent destabilization of a mutant p53 tetramer. Nature Struct. Biol. 9, 12–16 (2002).Mutations in regions of p53, apart from the well-known hot spots, can have consequences for tumour progression.

    Article  CAS  PubMed  Google Scholar 

  7. Ko, L. J. & Prives, C. p53: puzzle and paradigm. Genes Dev. 10, 1054–1072 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. de Vries, A. et al. Targeted point mutations of p53 lead to dominant negative inhibition of wild-type p53 function. Proc. Natl Acad. Sci. USA 99, 2948–2953 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Greenblatt, M. S., Bennett, W. P., Hollstein, M. & Harris, C. C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54, 4855–4878 (1994).

    CAS  PubMed  Google Scholar 

  10. Liu, G. et al. High metastatic potential in mice inheriting a targeted p53 missense mutation. Proc. Natl Acad. Sci. USA 97, 4174–4179 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sigal, A. & Rotter, V. Oncogenic mutations of the p53 tumor suppressor: the demons of the guardian of the genome. Cancer Res. 60, 6788–6793 (2000).

    CAS  PubMed  Google Scholar 

  12. Harvey, M. et al. A mutant p53 transgene accelerates tumour development in heterozygous but not nullizygous p53-deficient mice. Nature Genet. 9, 305–311 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Blandino, G., Levine, A. J. & Oren, M. Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultures cells to chemotherapy. Oncogene 18, 477–485 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Di Como, C. J., Gaiddon, C. & Prives, C. p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol. Cell. Biol. 19, 1438–1449 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gaiddon, C., Lokshn, M., Ahn, J., Zhang, T. & Prives, C. A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol. Cell. Biol. 21, 1874–1887 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Strano, S. et al. Physical and functional interaction between p53 mutants and different isoforms of p73. J. Biol. Chem. 275, 29503–29512 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Strano, S. et al. Physical interaction with human tumor derived p53 mutants inhibits p63 activities. J. Biol. Chem. 277, 18817–18826 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Marin, M. C. et al. A common polymorphism acts as an intragenic modifier of mutant p53 behaviour. Nature Genet. 25, 47–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Woods, D. B. & Vousden, K. H. Regulation of p53 function. Exp. Cell Res. 264, 56–66 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embyonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206–208 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Montes de Oca Luna, R., Wagner, D. S. & Lozano, G. Rescue of early embryonic lethality in Mdm2-deficient mice by deletion of p53. Nature 378, 203–206 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Parant, J. et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nature Genet. 29, 92–95 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Vousden, K. H. Activation of the p53 tumor suppressor gene. Biochim. Biophys. Acta 1602, 47–59 (2002).

    CAS  PubMed  Google Scholar 

  24. Damalas, A., Kahan, S., Shtutman, M., Ben-Ze'ev, A. & Oren, M. Deregulated β-catenin induces a p53- and ARF-dependent growth arrest and cooperates with Ras in transformation. EMBO J. 20, 4912–4922 (2001).An elegant illustration of how and why p53 function is lost during early stages of cancer development.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Kemp, C. J., Donehower, L. A., Bradley, A. & Balmain, A. Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors. Cell 74, 813–822 (1993).The unexpected observation that loss of p53 can inhibit papilloma formation.

    Article  CAS  PubMed  Google Scholar 

  26. Harrington, E. A., Fanidi, A. & Evan, G. I. Oncogenes and cell death. Curr. Opin. Genet. Dev. 4, 120–129 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Green, D. R. & Evan, G. I. A matter of life and death. Cancer Cell 1, 19–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Lassus, P., Ferlin, M., Piette, J. & Hibner, U. Anti-apoptotic activity of low levels of wild type p53. EMBO J. 15, 4566–4573 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Meng, R. D., McDonald, E. R., Sheikh, M. S., Fornace, A. J. & El-Deiry, W. S. The TRAIL decoy receptor TRUNDD (DcR2, TRAIL-R4) is induced by adenovirus p53 overexpression and can delay TRAIL-, p53- and KILLER/DR5-dependent colon cancer apoptosis. Mol. Ther. 1, 130–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Fang, L., Li, G., Lee, S. W. & Aaronson, S. A. p53 induction of heparin-binding EGF-like growth factor counteracts p53 growth suppression through activation of MAPK and PI3K/Akt signaling cascades. EMBO J. 20, 1931–1939 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Dotto, G. P. p21WAF1/CIP1: more than a break to the cell cycle? Biochim. Biophys. Acta 1471, M43–M56 (2000).

    CAS  PubMed  Google Scholar 

  32. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300–305 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Yu, J. et al. Identification and classification of p53-regulated genes. Proc. Natl Acad. Sci. USA 96, 14517–14522 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao, R. et al. Analysis of p53-regulated gene expression patterns using oligonucleotide arrays. Genes Dev. 14, 981–993 (2000).A glimpse into the complexity of p53-induced gene expression.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Kannan, K. et al. DNA microarrays identification of primary and secondary target genes regulated by p53. Oncogene 20, 2225–2234 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, L. et al. Analysis of p53 target genes in the human genome by bioinformatic and microarray approaches. J. Biol. Chem. 276, 43604–43610 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Contente, A., Dittmer, A., Koch, M. C. & Roth, J. D., M. A polymorphic microsatellite that mediates induction of PIG3 by p53. Nature Genet. 30, 315–320 (2002).

    Article  PubMed  Google Scholar 

  38. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Schuler, M. & Green, D. R. Mechanisms of p53-dependent apoptosis. Biochem. Soc. Trans. 29, 684–687 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Bouvard, V. et al. Tissue and cell-specific expression of the p53-target genes: Bax, Fas, Mdm2 and Waf1/p21, before and following ionising irradiation in mice. Oncogene 19, 649–660 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Ryan, K. M. & Vousden, K. H. Characterization of structural p53 mutants which show selective defects in apoptosis, but not cell cycle arrest. Mol. Cell. Biol. 18, 3692–3698 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yap, D. B., Hseih, J. K. & Lu, X. Mdm2 inhibits the apoptotic function of p53 mainly by targeting it for degradation. J. Biol. Chem. 275, 37296–37302 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Hsieh, J. K. et al. RB regulates the stability and the apoptotic function of p53 via MDM2. Mol. Cell 3, 181–193 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Murphy, M. et al. Transcriptional repression by wild type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev. 13, 2490–2501 (1999).A potential mechanism for p53-mediated transcriptional repression.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Zilfou, J. T., Hoffman, W. H., Sank, M., George, D. L. & Murphy, M. The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol. Cell. Biol. 21, 3974–3985 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Caelles, C., Helmberg, A. & Karin, M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370, 220–223 (1994).One of the first suggestions that p53 has transcriptionally independent apoptotic activities.

    Article  CAS  PubMed  Google Scholar 

  47. Haupt, Y., Rowan, S., Shaulian, E., Vousden, K. H. & Oren, M. Induction of apoptosis in HeLa cells by trans-activation deficient p53. Genes Dev. 9, 2170–2183 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Chen, X., Ko, L. J., Jayaraman, L. & Prives, C. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 10, 2438–2451 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Wagner, A. J., Kokontis, J. M. & Hay, N. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21Waf1/Cip1. Genes Dev. 8, 2817–2830 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Jimenez, G. S. et al. A transactivation-deficient mouse model provides insights into Trp53 regulation and function. Nature Genet. 26, 37–41 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Chao, C. et al. p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage. EMBO J. 19, 4967–4975 (2000).References 50 and 51 support the importance of transcriptional activity for the apoptotic function of p53 in vivo

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Bennett, M. et al. Cell surface trafficking of Fas: a rapid mechanism of p53 mediated apoptosis. Science 282, 290–293 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Ding, H.-F. et al. Essential role for caspase-8 in transcription–independent apoptosis triggered by p53. J. Biol. Chem. (in the press).

  54. Marchenko, N. D., Zaika, A. & Moll, U. M. Death signal-induced localization of p53 protein to the mitochondria. J. Biol. Chem. 275, 16202–16212 (2000).

    Article  CAS  PubMed  Google Scholar 

  55. Komarov, P. G. et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285, 1733–1737 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Vousden, K. H. p53: death star. Cell 101, 691–694 (2000).

    Article  Google Scholar 

  57. Crook, T., Marston, N. J., Sara, E. A. & Vousden, K. H. Transcriptional activation by p53 correlates with suppression of growth but not transformation. Cell 79, 817–827 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Rowan, S. et al. Specific loss of apoptotic but not cell cycle arrest function in a human tumour derived p53 mutant. EMBO J. 15, 827–838 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Friedlander, P., Haupt, Y., Prives, C. & Oren, M. A mutant p53 that discriminated between p53 responsive genes cannot induce apoptosis. Mol. Cell. Biol. 16, 4961–4971 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Ludwig, R. L., Bates, S. & Vousden, K. H. Differential transcriptional activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol. Cell. Biol. 16, 4952–4960 (1996).References 59 and 60 establish the ability of p53 to discriminate between different promoters.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Szak, S. T., Mays, D. & Pietenpol, J. A. Kinetics of p53 binding to promoter sites in vivo. Mol. Cell. Biol. 21, 3375–3386 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Kaeser, M. D. & Iggo, R. D. Chromatin immunoprecipitation analyis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc. Natl Acad. Sci. USA 99, 95–100 (2002).

    Article  CAS  PubMed  Google Scholar 

  63. Espinosa, J. M. & Emerson, B. M. Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol. Cell 8, 57–69 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Sakaguchi, K. et al. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12, 2831–2841 (1998).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Gu, W. & Roeder, R. G. Activation of p53 sequence-specific DNA binding by acetylation of the C-terminal domain. Cell 90, 595–606 (1997).

    Article  CAS  PubMed  Google Scholar 

  66. Prives, C. & Manley, J. L. Why is p53 acetylated? Cell 107, 815–818 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Shikama, N. et al. A novel cofactor for p300 that regulates the p53 response. Mol. Cell 4, 365–376 (1999).Identification of JMY as a transcriptional cofactor that participates in the activation of selective target genes.

    Article  CAS  PubMed  Google Scholar 

  68. Samuels-Lev, Y. et al. ASPP proteins specifically stimulate the apoptotic function of p53. Mol. Cell 8, 781–794 (2001).A description of the ASPP family of proteins as specific regulators of the apoptotic function of p53.

    Article  CAS  PubMed  Google Scholar 

  69. Flores, E. R. et al. p63 and p73 are required for p53-dependent apoptosis in response to DNA damage. Nature 416, 560–564 (2002).p63 and p73 are required for p53-induced apoptosis.

    Article  CAS  PubMed  Google Scholar 

  70. Phillips, A. C. & Vousden, K. H. E2F-1 induced apoptosis. Apoptosis 6, 173–182 (2001).

    Article  CAS  PubMed  Google Scholar 

  71. Irwin, M. et al. Role for the p53 homolog p73 in E2F1-induced apoptosis. Nature 407, 645–648 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Stiewe, T. & Putzer, B. M. Role of the p53-homologue p73 in E2F-1 induced apoptosis. Nature Genet. 26, 464–469 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Hsieh, J.-K. et al. Novel function of the cyclin A binding site of E2F in regulating p53-induced apoptosis in response to DNA damage. Mol. Cell. Biol. 22, 78–93 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Karin, M. & Lin, A. NF-κB at the crossroads of life and death. Nature Immunol. 3, 221–227 (2002).

    Article  CAS  Google Scholar 

  75. Ravi, R. et al. p53-mediated repression of nuclear factor-κB RelA via the transcriptional integrator p300. Cancer Res. 58, 4531–4536 (1998).

    CAS  PubMed  Google Scholar 

  76. Webster, G. A. & Perkins, N. D. Transcriptional cross talk between NF-κB and p53. Mol. Cell. Biol. 19, 3485–3495 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Ryan, K. M., Ernst, M. K., Rice, N. R. & Vousden, K. H. Role of NF-κB in p53-mediated programmed cell death. Nature 404, 892–897 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Karuman, P. et al. The Peutz–Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol. Cell 7, 1307–1319 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. Robles, A. I. & Harris, C. C. p53-mediated apoptosis and genomic instabilty diseases. Acta Oncol. 40, 696–701 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Oda, K. et al. p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102, 849–862 (2000).Phosphorylation of p53 on Ser46 regulates its ability to activate expression of some apototic target genes.

    Article  CAS  PubMed  Google Scholar 

  81. Bulavin, D. et al. Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J. 18, 6845–6854 (1999).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. D'Orazi, G. et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nature Cell Biol. 4, 11–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Hofmannn, T. G. et al. Regulation of p53 activity by its interaction with homeodomain-interacting proten kinase-2. Nature Cell Biol. 4, 1–10 (2002).

    Article  CAS  Google Scholar 

  84. Takekawa, M. et al. p53-inducible Wip1 phosphatase mediated a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J. 19, 6517–6526 (2000).The phosphatase WIP1, which is induced by p53, regulates Ser46 phosphorylation and, therefore, the apoptotic function of p53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Saito, S. et al. ATM mediates phosphorylation at mutliple p53 sites, including serine 46, in response to ionizing radiation. J Biol. Chem. 277, 12491–12494 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Okamura, S. et al. p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis. Mol. Cell. 8, 85–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Fiscella, M. et al. Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc. Natl Acad. Sci. USA 94, 6048–6053 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Costanzo, A. et al. DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol. Cell. 9, 175–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Vousden, K. H. & Vande Woude, G. F. The ins and outs of p53. Nature Cell Biol. 2, E178–E180 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Gottifredi, V. & Prives, C. Getting p53 out of the nucleus. Science 292, 1851–1852 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Ferbeyre, G. et al. PML is induced by oncogenic Ras and promotes premature senescence. Genes Dev. 14, 2015–2027 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  92. Fogal, V. et al. Regulation of p53 activity in nuclear bodies by a specific PML isoform. EMBO J. 19, 6185–6195 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Guo, A. et al. The function of PML on p53-dependent apoptosis. Nature Cell Biol. 2, 730–736 (2000).

    Article  CAS  PubMed  Google Scholar 

  94. Pearson, M. et al. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature 406, 207–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Gottifredi, V. & Prives, C. p53 and PML: new partners in tumor supression. Trends Cell Biol. 11, 184–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Sabbatini, P. & McCormick, F. Phosphoinositol 3-OH kinase (PI3K) and PKB/Akt delay the onset of p53-mediated transcriptionally dependent apoptosis. J. Biol. Chem. 274, 24263–24269 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Mayo, L. & Donner, D. B. A phosphatidylinosital 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl Acad Sci. USA 98, 11598–11603 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhou, B. P., Liao, W., Zou, Y., Spohn, B. & Hung, M.-C. Her-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nature Cell Biol. 3, 973–982 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Su, F., Overholtzer, M., Besser, D. & Levine, A. J. WISP-1 attenuates p53-mediated apoptosis in response to DNA damage through activation of the Akt kinase. Genes Dev. 16, 46–57 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Yamaguchi, A. et al. Akt activation protects hippocampal neurons from apoptosis by inhibiting transcriptional activity of p53. J. Biol. Chem. 276, 5256–5264 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Han, J. et al. Expression of BBC3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc. Natl Acad. Sci. USA 98, 11318–11323 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Stambolic, V. et al. Regulation of PTEN transcription by p53. Mol. Cell 8, 317–325 (2001).Transcriptional activation of PTEN is necessary for p53 to induce an apoptotic response.

    Article  CAS  PubMed  Google Scholar 

  103. Bykov, V. J. N. et al. Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nature Med. 8, 282–288 (2002).

    Article  CAS  PubMed  Google Scholar 

  104. Foster, B. A., Coffey, H. A., Morin, M. J. & Rastinejad, F. Pharmacological rescue of mutant p53 conformation and function. Science 286, 2507–2510 (1999).

    Article  CAS  PubMed  Google Scholar 

  105. Friedler, A. et al. A peptide that binds and stabilizes p53 core domain: chaperone strategy for rescue of oncogenic mutants. Proc. Natl Acad. Sci. USA 99, 937–942 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lissy, N. A., Davis, P. K., Irwin, M., Kaelin, W. G. & Dowdy, S. F. A common E2F-1 and p73 pathway mediates cell death induced by TCR activation. Nature 407, 642–645 (2000).

    Article  CAS  PubMed  Google Scholar 

  107. Kauffmann-Zeh, A. et al. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385, 544–548 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Bulavin, D. V. et al. Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nature Genet. 31, 210–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Soengas, M. S. et al. Apaf-1 and caspase-9 in p53-dependent apoptosis and tumor inhibition. Science 284, 156–159 (1999).

    Article  CAS  PubMed  Google Scholar 

  110. Soengas, M. S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Eischen, C. M., Roussel, M. F., Korsmeyer, S. J. & Cleveland, J. L. Bax loss impairs Myc-induced apoptosis and circumvents the selection for p53 mutations during Myc-mediated lymphomagenesis. Mol. Cell. Biol. 21, 7653–7662 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  112. Singh, B. et al. p53 regulates cell survival by inhibiting PIK3CA in squamous cell carcinomas. Genes Dev. 16, 984–993 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  113. Melino, G., De Laurenzi, V. & Vousden, K. H. p73 and cancer. Nature Rev. Cancer 2 609–615 (2002).

    Article  CAS  Google Scholar 

  114. Moroni, M. C. et al. Apaf-1 is a transcriptional target for E2F and p53. Nature Cell Biol. 3, 552–558 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Fortin, A. et al. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. J. Cell. Biol. 155, 207–216 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Robles, A. I., Bemmels, N. A., Foraker, A. B. & Harris, C. C. APAF-1 is a transcriptional target of p53 in DNA damage-induced apoptosis. Cancer Res. 61, 6660–6664 (2001).

    CAS  PubMed  Google Scholar 

  117. Miyashita, T. & Reed, J. C. Tumor suppressor p53 is a direct transcriptional activator of the human BAX gene. Cell 80, 293–299 (1995).

    Article  CAS  PubMed  Google Scholar 

  118. Owen-Schaub, L. B. et al. Wild-type human p53 and a temperature sensitive mutant induce Fas/APO-1 expression. Mol. Cell. Biol. 15, 3032–3040 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Hwang, P. M. et al. Ferredocin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cells. Nature Med. 7, 1111–1117 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Buckbinder, L. et al. Induction of the growth inhibitor IGF-binding protein 3 by p53. Nature 377, 646–649 (1995).

    Article  CAS  PubMed  Google Scholar 

  121. Wu, G. et al. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nature Genet. 17, 141–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  122. Oda, E. et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058 (2000).

    Article  CAS  PubMed  Google Scholar 

  123. Attardi, L. D. et al. PERP, an apoptosis-associated target of p53, is a novel member of the PMP-22/gas3 family. Genes Dev. 14, 704–718 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  124. Lin, Y., Ma, W. & Benchimol, S. Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nat. Genet. 26, 122–127 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Lehar, S. M. et al. Identification and cloning of EI24, a gene induced by p53 in etoposide-treated cells. Oncogene 12, 1181–1187 (1996).

    CAS  PubMed  Google Scholar 

  126. Gu, Z., Flemington, C., Chittenden, T. & Zambetti, G. P. ei24, a p53 response gene involved in growth suppression and apoptosis. Mol. Cell. Biol. 20, 233–241 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Nakano, K. & Vousden, K. H. PUMA, a novel pro-apopototic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).

    Article  CAS  PubMed  Google Scholar 

  128. Yu, J., Zhang, L., Hwang, P. M., Kinzler, K. W. & Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7, 673–682 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Rouault, J. P. et al. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nature Genet. 14, 482–486 (1996).

    Article  CAS  PubMed  Google Scholar 

  130. El-Deiry, W. et al. WAF1, a potential mediator of p53 tumour suppression. Cell 75, 817–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  131. Hermeking, H. et al. 14-3-3σ is a p53-regulated inhibitor of G2/M progression. Mol. Cell 1, 3–11 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Hollander, M. C. et al. Analysis of the mammalian Gadd45 gene and its responsiveness to DNA damage. J. Biol. Chem. 268, 24385–24393 (1993).

    Article  CAS  PubMed  Google Scholar 

  133. Nakano, K., Balint, E., Ashcroft, M. & Vousden, K. H. A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene 19, 4283–4289 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Tanaka, H. et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 404, 42–49 (2000).

    Article  CAS  PubMed  Google Scholar 

  135. Dameron, K. M., Volpert, O. V., Tainsky, M. A. & Bouck, N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582–1584 (1994).

    Article  CAS  PubMed  Google Scholar 

  136. Van Meir, E. G. et al. Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nature Genet. 8, 171–176 (1994).

    Article  CAS  PubMed  Google Scholar 

  137. Nishimori, H. et al. A novel brain-specific p53–target gene, BAI1, containing thrombospondin type 1 repeats inhibits experimental angiogenesis. Oncogene 15, 2145–2150 (1997).

    Article  CAS  PubMed  Google Scholar 

  138. Bian, J. & Sun, Y. Transcriptional activation by p53 of the human type IV collagenase (gelatinase A or matrix metalloproteinase 2) promoter. Mol. Cell. Biol. 17, 6330–6338 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  139. Zou, Z. et al. p53 regulates the expression of the tumor suppressor gene maspin. J. Biol. Chem. 275, 6051–6054 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Mashimo, T. et al. The expression of the KAI1 gene, a tumor metastasis suppressor, is directly activated by p53. Proc. Natl Acad. Sci. USA 95, 11307–11311 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Barak, Y., Juven, T., Haffner, R. & Oren, M. Mdm2 expression is induced by wild type p53 activity. EMBO J. 12, 461–468 (1993).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Wu, X. W., Bayle, J. H., Olson, D. & Levine, A. J. The p53 Mdm2 autoregulatory feedback loop. Genes Dev. 7, 1126–1132 (1993).

    Article  CAS  PubMed  Google Scholar 

  143. Chen, X., Zheng, Y., Zhu, J., Jiang, J. & Wang, J. p73 is transcriptionally regulated by DNA damage, p53 and p73. Oncogene 20, 769–774 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Grob, T. J. et al. Human ΔNp73 regulates a dominant negative feedback loop for TAp73 and p53. Cell Death Differ. 8, 1213–1223 (2001).

    Article  CAS  PubMed  Google Scholar 

  145. Okamoto, K. & Beach, D. Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J. 13, 4816–4822 (1994).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all our colleagues whose excellent papers we have been unable to cite. Also, we thank the members of both the Vousden and Lu laboratories for stimulating discussion and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen H. Vousden.

Related links

Related links

DATABASES

Cancer.gov

breast cancer

colon cancer

LocusLink

AKT

APAF1

APC

ARF

ASPP1

ASPP2

ATM

BAX

BLM

caspase-8

caspase-9

CBP

CDKN1A

CHK2

cyclin A

cyclin G

E2F1

FAS

HB-EGF

HIPK2

JMY

LKB1

MAPK

MDM2

MDMX

MYC

NF-κB

p300

p53

p53AIP1

p53DINP1

p63

p73

PI3K

PIK3CA

PML

PTEN

PUMA

RAS

RB

SIN3A

SMAC

TNF

TRAIL

TRUNDD

WIP1

WISP1

WNT

XPB

XPD

Glossary

DOMINANT-NEGATIVE MUTANT

A non-functional mutant protein that competes with the normal, non-mutated protein, thereby blocking its activity.

UBIQUITIN LIGASES

A family of enzymes that function in the final step of conjugation of ubiquitin chains to lysine residues in target proteins. Polyubiquitylated proteins are recognized and degraded by the proteasome.

APC

(Adenomatous polyposis coli). A tumour-suppressor gene that is mutated in sporadic colorectal cancers.

DIFFERENTIAL DISPLAY

An expression analysis method in which cDNAs from different samples are amplified by polymerase chain reaction using a combination of random primers and anchored oligo-dT primers.

SAGE

Serial analysis of gene expression that is based on the capture and analysis of a short nucleotide sequence (or tag) that is close to the 3′ end of each cDNA in the sample.

MICROARRAYS

Chips that contain arrays of oligonucleotides that correspond to known genes and that are used to analyse gene expression by hybridization with samples. In contrast to differential display and SAGE, this technique is limited to the analysis of genes that are represented on the chip.

HUMAN PAPILLOMAVIRUS E7

A viral oncoprotein that is derived from certain human papillomavirus types that are associated with an increased risk of cervical cancer. E7 binds and inactivates retinoblastoma.

PEUTZ–JEGHER SYNDROME

A cancer-susceptibility syndrome that is associated with inheritance of mutation in LKB1, a serine/threonine kinase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vousden, K., Lu, X. Live or let die: the cell's response to p53. Nat Rev Cancer 2, 594–604 (2002). https://doi.org/10.1038/nrc864

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc864

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing