Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Non-small-cell lung cancers: a heterogeneous set of diseases

A Corrigendum to this article was published on 19 March 2015

This article has been updated

Key Points

  • Next-generation sequencing and other high-throughput analyses have begun to show the many different molecular and genetic subsets of non-small-cell lung cancer (NSCLC) and have drastically altered the clinical evaluation and treatment of patients during the past decade.

  • The pathological features and treatment response of NSCLC are affected by genetic and epigenetic profiles, as well as by the cellular origins of the tumours.

  • Target-specific small-molecule inhibitors, such as epidermal growth factor receptor (EGFR) and echinoderm microtubule-associated protein-like 4 (EML4)–anaplastic lymphoma kinase (ALK) inhibitors, have achieved much greater treatment response and survival advantage compared with conventional chemotherapies. However, the treatment response is often short-lived and survival remains limited.

  • Cellular heterogeneity within the tumour milieu influences tumorigenesis, tumour progression and treatment response. The main components of this dynamic microenvironment include vasculature, immune cells, fibroblasts and tumour cell subpopulations.

  • Immune therapies that aim to rejuvenate antitumour immune responses have shown success in early clinical trials. The combination of immunotherapy with other targeted therapies is anticipated in the near future.

  • Data from the bench on criteria for patient stratification and treatment selection are increasingly being translated into clinical practice.

Abstract

Non-small-cell lung cancers (NSCLCs), the most common lung cancers, are known to have diverse pathological features. During the past decade, in-depth analyses of lung cancer genomes and signalling pathways have further defined NSCLCs as a group of distinct diseases with genetic and cellular heterogeneity. Consequently, an impressive list of potential therapeutic targets was unveiled, drastically altering the clinical evaluation and treatment of patients. Many targeted therapies have been developed with compelling clinical proofs of concept; however, treatment responses are typically short-lived. Further studies of the tumour microenvironment have uncovered new possible avenues to control this deadly disease, including immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The lung cancer microenvironment.
Figure 2: A diagram of proximal and distal lung cells, indicating markers that are retained in carcinomas and putative squamous cell carcinoma (SCC) and adenocarcinoma (ADC) cells of origin.

Similar content being viewed by others

Change history

  • 19 March 2015

    In the original version of this article, the word 'proximal' was incorrectly used twice instead of 'distal' in two sentences in the legend for Figure 2. The sentences should have stated "ADCs can be modelled by KrasG12D expression (long latency), KrasG12D expression and Trp53-null, and epidermal growth factor receptor (EGFR)T790M/L858R, among other genetic models, and they are thought to arise from more distal airway cells. These tumours often retain characteristics of distal airways, such as the expression of surfactant protein C (SPC), KRT7 and thyroid transcription factor 1 (TTF1)." These corrections have been made in the online version of the article.

References

  1. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    PubMed  Google Scholar 

  2. Siegel, R., Naishadham, D. & Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 63, 11–30 (2013).

    Article  PubMed  Google Scholar 

  3. Ettinger, D. S. et al. Non-Small Cell Lung Cancer, Version 2.2013. J. Natl Compr. Canc. Netw. 11, 645–653 (2013).

    Article  PubMed  Google Scholar 

  4. Davidson, M. R., Gazdar, A. F. & Clarke, B. E. The pivotal role of pathology in the management of lung cancer. J. Thorac. Dis. 5, S463–S478 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. Langer, C. J., Besse, B., Gualberto, A., Brambilla, E. & Soria, J.-C. The evolving role of histology in the management of advanced non–small-cell lung cancer. J. Clin. Oncol. 28, 5311–5320 (2010).

    Article  PubMed  Google Scholar 

  6. Rock, J. R., Randell, S. H. & Hogan, B. L. M. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis. Model. Mech. 3, 545–556 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lu, Y. et al. Evidence that Sox2 overexpression is oncogenic in the lung. PLoS ONE 5, http://dx.doi.org/10.1371/journal.pone.0011022 (2010).

  8. Davies, H. et al. Mutations of the BRAF gene in human cancer. Nature 417, 949–954 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Santos, E. et al. Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science 223, 661–664 (1984).

    Article  CAS  PubMed  Google Scholar 

  10. Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129–2139 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497–1500 (2004). In this study, the clinical observation that only some lung cancers responded well to the EGFR inhibitor gefitinib was linked to the presence of EGFR-activating mutations in the responding tumours. This finding revolutionized the stratification of patients that receive EGFR inhibitor treatment and furthered our understanding of oncogene addiction in NSCLC.

    Article  CAS  PubMed  Google Scholar 

  12. Pao, W. et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc. Natl Acad. Sci. USA 101, 13306–13311 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shepherd, F. A. et al. Erlotinib in previously treated non-small-cell lung cancer. N. Engl. J. Med. 353, 123–132 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Engelman, J. A. et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316, 1039–1043 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Fernandez-Cuesta, L. et al. CD74-NRG1 fusions in lung adenocarcinoma. Cancer Discov. 4, 415–422 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Kohno, T. et al. KIF5B-RET fusions in lung adenocarcinoma. Nature Med. 18, 375–377 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Rikova, K. et al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 131, 1190–1203 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Soda, M. et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448, 561–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Stephens, P. et al. Lung cancer: intragenic ERBB2 kinase mutations in tumours. Nature 431, 525–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. The Cancer Genome Atlas Research Network (TCGA). Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012). As part of The Cancer Genome Atlas, this study was the first to provide a comprehensive landscape of genomic and epigenomic alterations in lung SCCs. This study identified potential druggable targets in most tumours, and many of these targets are now being validated as therapeutic options.

  21. Vaishnavi, A. et al. Oncogenic and drug-sensitive NTRK1 rearrangements in lung cancer. Nature Med. 19, 1469–1472 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Weiss, J. et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl. Med. 2, 62ra93 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding, L. et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455, 1069–1075 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heist, R. S. & Engelman, J. A. Snapshot: non-small cell lung cancer. Cancer Cell 21, 448–448.e2 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Guagnano, V. et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov. 2, 1118–1133 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Hammerman, P. S. et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 1, 78–89 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kandoth, C. et al. Mutational landscape and significance across 12 major cancer types. Nature 502, 333–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. The Cancer Genome Atlas Research Network (TCGA). Comprehensive molecular profiling of lung adenocarcinoma. Nature http://dx.doi.org/10.1038/nature13385 (2014).

  30. Lawrence, M. S. et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505, 495–501 (2014). In this study, the genetic complexity of 21 tumour types was directly compared, demonstrating that both lung ADCs and lung SCCs have extremely high somatic mutation rates compared with other tumour types. These authors also present a comprehensive catalogue of cancer genes for each tumour subtype, furthering our global understanding of cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Govindan, R. et al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150, 1121–1134 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Barbie, D. A. et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 462, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun, N. et al. Isocitrate dehydrogenase 1 is a novel plasma biomarker for the diagnosis of non-small cell lung cancer. Clin. Cancer Res. 19, 5136–5145 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Tan, F. et al. Identification of isocitrate dehydrogenase 1 as a potential diagnostic and prognostic biomarker for non-small cell lung cancer by proteomic analysis. Mol. Cell Proteomics 11, M111.008821 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Quail, D. F. & Joyce, J. A. Microenvironmental regulation of tumor progression and metastasis. Nature Med. 19, 1423–1437 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. DuPage, M. et al. Endogenous T cell responses to antigens expressed in lung adenocarcinomas delay malignant tumor progression. Cancer Cell 19, 72–85 (2011). By engineering KRAS-driven GEMM tumours to express neoantigens, the authors of this study explored the dynamic responses of endogenous T cells to naturally arising tumours and informed our ideas about how lung tumours interact with immune cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murdoch, C., Muthana, M., Coffelt, S. B. & Lewis, C. E. The role of myeloid cells in the promotion of tumour angiogenesis. Nature Rev. Cancer 8, 618–631 (2008).

    Article  CAS  Google Scholar 

  38. Xiao, Z. et al. The pivotal role of IKKα in the development of spontaneous lung squamous cell carcinomas. Cancer Cell 23, 527–540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vignaud, J.-M. et al. The role of platelet-derived growth factor production by tumor-associated macrophages in tumor stroma formation in lung cancer. Cancer Res. 54, 5455–5463 (1994).

    CAS  PubMed  Google Scholar 

  40. Zaynagetdinov, R. et al. A critical role for macrophages in promotion of urethane-induced lung carcinogenesis. J. Immunol. 187, 5703–5711 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Bellocq, A. et al. Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome. Am. J. Pathol. 152, 83–92 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Houghton, A. M. et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nature Med. 16, 219–223 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Mantovani, A., Cassatella, M. A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Rev. Immunol. 11, 519–531 (2011).

    Article  CAS  Google Scholar 

  44. Brahmer, J. R. et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med. 366, 2455–2465 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012). References 44 and 45 were the first studies to show the efficacy and durable response of immunotherapy for the treatment of late-stage NSCLCs. The data suggest a relationship between PDL1 expression on tumour cells and objective response, leading to many new studies examining the expression of this immune-evasion molecule on different NSCLCs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Forde, P. M., Kelly, R. J. & Brahmer, J. R. New strategies in lung cancer: translating immunotherapy into clinical practice. Clin. Cancer Res. 20, 1067–1073 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. Akbay, E. A. et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 3, 1355–1363 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Xu, C. et al. Loss of Lkb1 and Pten leads to lung squamous cell carcinoma with elevated PD-L1 expression. Cancer Cell 25, 590–604 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ancrile, B., Lim, K. H. & Counter, C. M. Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev. 21, 1714–1719 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gao, S. P. et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J. Clin. Invest. 117, 3846–3856 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Visvader, J. E. Cells of origin in cancer. Nature 469, 314–322 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Tata, P. R. et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 503, 218–223 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chaffer, C. L. et al. Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proc. Natl Acad. Sci. 108, 7950–7955 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kwon, M. & Berns, A. Mouse models for lung cancer. Mol. Oncol. 7, 165–177 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, C. et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121, 823–835 (2005). This study was the first to characterize a bipotent cell type in the distal lung, termed the BASC. Importantly, the BASCs were shown to expand in response to oncogenic KRAS activation, suggesting that they could function as a cell of origin for lung ADC.

    Article  CAS  PubMed  Google Scholar 

  57. Tiozzo, C. et al. Deletion of Pten expands lung epithelial progenitor pools and confers resistance to airway injury. Am. J. Respir. Crit. Care Med. 180, 701–712 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ventura, J. J. et al. p38α MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nature Genet. 39, 750–758 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Xu, X. et al. Evidence for type II cells as cells of origin of K-Ras-induced distal lung adenocarcinoma. Proc. Natl Acad. Sci. USA 109, 4910–4915 (2012). This study expanded our understanding of cells of origin in GEMMs of lung ADC by using cell-type specific promoters to drive Cre-Lox Kras activation. In contrast to previous theories, the authors find that AT2 cells, rather than BASCs or club cells, are the most likely cells of origin for KRAS-driven tumours.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Desai, T. J., Brownfield, D. G. & Krasnow, M. A. Alveolar progenitor and stem cells in lung development, renewal and cancer. Nature 507, 190–194 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mainardi, S. et al. Identification of cancer initiating cells in K-Ras driven lung adenocarcinoma. Proc. Natl Acad. Sci. USA 111, 255–260 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Rowbotham, S. P. & Kim, C. F. Diverse cells at the origin of lung adenocarcinoma. Proc. Natl Acad. Sci. USA 111, 4745–4746 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sutherland, K. D. et al. Multiple cells-of-origin of mutant K-Ras–induced mouse lung adenocarcinoma. Proc. Natl Acad. Sci. USA 111, 4952–4957 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Giangreco, A. et al. β-Catenin determines upper airway progenitor cell fate and preinvasive squamous lung cancer progression by modulating epithelial–mesenchymal transition. J. Pathol. 226, 575–587 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ji, H. et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 448, 807–810 (2007). This study validated Lkb1 as a bona fide tumour suppressor in NSCLC by deleting Lkb1 in the KRAS-driven GEMM of lung cancer. Lkb1 loss not only potentiated tumour development but also promoted metastasis and drove tumours with mixed ADC and SCC characteristics.

    Article  CAS  PubMed  Google Scholar 

  66. Malkoski, S. P. et al. Role of PTEN in basal cell derived lung carcinogenesis. Mol. Carcinog. http://dx.doi.org/10.1002/mc.22030 (2013).

  67. Beck, B. & Blanpain, C. Unravelling cancer stem cell potential. Nature Rev. Cancer 13, 727–738 (2013).

    Article  CAS  Google Scholar 

  68. Li, F., Tiede, B., Massague, J. & Kang, Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 17, 3–14 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Jiang, F. et al. Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol. Cancer Res. 7, 330–338 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lau, A. N. et al. Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis. EMBO J. 33, 468–481 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, J. et al. Lung cancer tumorigenicity and drug resistance are maintained through ALDHhiCD44hi tumor initiating cells. Oncotarget 4, 1698–1711 (2013).

    PubMed  PubMed Central  Google Scholar 

  72. Sullivan, J. P. et al. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on Notch signaling. Cancer Res. 70, 9937–9948 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zheng, Y. et al. A rare population of CD24+ITGB4+Notchhi cells drives tumor propagation in NSCLC and requires Notch3 for self-renewal. Cancer Cell 24, 59–74 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Curtis, S. J. et al. Primary tumor genotype is an important determinant in identification of lung cancer propagating cells. Cell Stem Cell 7, 127–133 (2010). In this study, an orthotopic serial transplantation model of primary murine lung tumour cells was used to identify the first bona fide TPC population in lung cancer. Importantly, TPC phenotype was shown to be dependent on primary tumour genotype, suggesting that TPC characteristics will differ for different driver mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sequist, L. V. et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci. Transl. Med. 3, 75ra26 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Song, H. et al. Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis. Proc. Natl Acad. Sci. USA 109, 17531–17536 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Park, K.-S. et al. Characterization of the cell of origin for small cell lung cancer. Cell Cycle 10, 2806–2815 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sutherland, K. D. et al. Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell 19, 754–764 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Gazdar, A. F., Girard, L., Lockwood, W. W., Lam, W. L. & Minna, J. D. Lung cancer cell lines as tools for biomedical discovery and research. J. Natl Cancer Inst. 102, 1310–1321 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dow, L. E. & Lowe, S. W. Life in the fast lane: mammalian disease models in the genomics era. Cell 148, 1099–1109 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Levy, M. A., Lovly, C. M. & Pao, W. Translating genomic information into clinical medicine: lung cancer as a paradigm. Genome Res. 22, 2101–2108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shaw, A. T., Hsu, P. P., Awad, M. M. & Engelman, J. A. Tyrosine kinase gene rearrangements in epithelial malignancies. Nature Rev. Cancer 13, 772–787 (2013).

    Article  CAS  Google Scholar 

  83. Camidge, D. R. et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 13, 1011–1019 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mok, T. S. et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 361, 947–957 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Shaw, A. T. et al. Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 12, 1004–1012 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sequist, L. V. et al. Phase I study of BGJ398, a selective pan-FGFR inhibitor in genetically preselected advanced solid tumors. AACR Meet. [Abstr] CT326 (2014).

  87. Katayama, R. et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci. Transl. Med. 4, 120ra17 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kobayashi, S. et al. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 352, 786–792 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Shaw, A. T. et al. Ceritinib in ALK-rearranged non-small-cell lung cancer. N. Engl. J. Med. 370, 1189–1197 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Walter, A. O. et al. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov. 3, 1404–1415 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cross, D. A. et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. http://dx.doi.org/10.1158/2159-8290.CD-14-0337 (2014).

  92. Yonesaka, K. et al. Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci. Transl. Med. 3, 99ra86 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, Z. et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nature Genet. 44, 852–860 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Ercan, D. et al. Reactivation of ERK signaling causes resistance to EGFR kinase inhibitors. Cancer Discov. 2, 934–947 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lin, L. & Bivona, T. G. Mechanisms of resistance to epidermal growth factor receptor inhibitors and novel therapeutic strategies to overcome resistance in NSCLC patients. Chemother. Res. Pract. 2012, 817297 (2012).

    PubMed  PubMed Central  Google Scholar 

  96. Bivona, T. G. et al. FAS and NF-κB signalling modulate dependence of lung cancers on mutant EGFR. Nature 471, 523–526 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xu, K. et al. EZH2 Oncogenic Activity in Castration-Resistant Prostate Cancer Cells Is Polycomb-Independent. Science 338, 1465–1469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, Z. et al. A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 483, 613–617 (2012). This study was the first of its kind to use GEMMs to conduct a co-clinical trial that mirrored an ongoing human clinical trial in patients with KRAS -mutant lung cancer. The study found genetic predictors of therapy response and provided a model for future co-clinical trials aimed at accelerating the pace of novel therapeutic development.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Med. 14, 1351–1356 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Janne, P. A. et al. Selumetinib plus docetaxel for KRAS-mutant advanced non-small-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol. 14, 38–47 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Lim, S. M. et al. Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Angew. Chem. Int. Ed Engl. 53, 199–204 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-RasG12C inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bass, A. J. et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nature Genet. 41, 1238–1242 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Iwakawa, R. et al. MYC amplification as a prognostic marker of early-stage lung adenocarcinoma identified by whole genome copy number analysis. Clin. Cancer Res. 17, 1481–1489 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Lin, C. Y. et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 151, 56–67 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Engelman, J. A. & Janne, P. A. Mechanisms of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Clin. Cancer Res. 14, 2895–2899 (2008).

    Article  PubMed  Google Scholar 

  107. Grosso, J. F. & Jure-Kunkel, M. N. CTLA-4 blockade in tumor models: an overview of preclinical and translational research. Cancer Immun. 13, 5 (2013).

    PubMed  PubMed Central  Google Scholar 

  108. Lee, D. W., Barrett, D. M., Mackall, C., Orentas, R. & Grupp, S. A. The future is now: chimeric antigen receptors as new targeted therapies for childhood cancer. Clin. Cancer Res. 18, 2780–2790 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tseng, D. et al. Anti-CD47 antibody-mediated phagocytosis of cancer by macrophages primes an effective antitumor T-cell response. Proc. Natl Acad. Sci. USA 110, 11103–11108 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zhang, B. CD73: a novel target for cancer immunotherapy. Cancer Res. 70, 6407–6411 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Schoenfeld, J. et al. Active immunotherapy induces antibody responses that target tumor angiogenesis. Cancer Res. 70, 10150–10160 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yuan, J. et al. Pretreatment serum VEGF is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab. Cancer Immunol. Res. 2, 127–132 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Lee, J.-H. et al. Lung stem cell differentiation in mice directed by endothelial cells via a BMP4-NFATc1-thrombospondin-1 axis. Cell 156, 440–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Straussman, R. et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487, 500–504 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shimamura, T. et al. Efficacy of BET bromodomain inhibition in Kras-mutant non-small cell lung cancer. Clin. Cancer Res. 19, 6183–6192 (2013).

    Article  CAS  PubMed  Google Scholar 

  118. Liu, Y. et al. Metabolic and functional genomic studies identify deoxythymidylate kinase as a target in LKB1-mutant lung cancer. Cancer Discov. 3, 870–879 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Molina-Arcas, M., Hancock, D. C., Sheridan, C., Kumar, M. S. & Downward, J. Coordinate direct input of both KRAS and IGF1 receptor to activation of PI3 kinase in KRAS-mutant lung cancer. Cancer Discov. 3, 548–563 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Orita, H. et al. Selective inhibition of fatty acid synthase for lung cancer treatment. Clin. Cancer Res. 13, 7139–7145 (2007).

    CAS  PubMed  Google Scholar 

  121. Shackelford, D. B. et al. LKB1 inactivation dictates therapeutic response of non-small cell lung cancer to the metabolism drug phenformin. Cancer Cell 23, 143–158 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Hughes, L. A. et al. The CpG island methylator phenotype: what's in a name? Cancer Res. 73, 5858–5868 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Losman, J. A. & Kaelin, W. G. Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27, 836–852 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shinjo, K. et al. Integrated analysis of genetic and epigenetic alterations reveals CpG island methylator phenotype associated with distinct clinical characters of lung adenocarcinoma. Carcinogenesis 33, 1277–1285 (2012).

    Article  CAS  PubMed  Google Scholar 

  125. Chen, Z. et al. Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene. Cancer Res. 70, 9827–9836 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ji, H. et al. The impact of human EGFR kinase domain mutations on lung tumorigenesis and in vivo sensitivity to EGFR-targeted therapies. Cancer Cell 9, 485–495 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Chen, Z. et al. Co-clinical trials demonstrate superiority of crizotinib to chemotherapy in ALK-rearranged non-small cell lung cancer and predict strategies to overcome resistance. Clin. Cancer Res. 20, 1204–1211 (2014).

    Article  CAS  PubMed  Google Scholar 

  128. Jackson, E. L. et al. The Differential effects of mutant p53 alleles on advanced murine lung cancer. Cancer Res. 65, 10280–10288 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Oliver, T. G. et al. Chronic cisplatin treatment promotes enhanced damage repair and tumor progression in a mouse model of lung cancer. Genes Dev. 24, 837–852 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Blasco, R. B. et al. c-Raf, but not B-Raf, is essential for development of K-Ras oncogene-driven non-small cell lung carcinoma. Cancer Cell 19, 652–663 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Puyol, M. et al. A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 18, 63–73 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Savino, M. et al. The action mechanism of the Myc inhibitor termed Omomyc may give clues on how to target Myc for cancer therapy. PLoS ONE 6, e22284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Soucek, L. et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev. 27, 504–513 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Zhang, W. C. et al. Glycine decarboxylase activity drives non-small cell lung cancer tumor-initiating cells and tumorigenesis. Cell 148, 259–272 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Rock, J. R. et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl Acad. Sci. USA 106, 12771–12775 (2009). In this study, the KRT5+ and p63+ basal cells of the trachea were shown to be true stem or progenitor cells through lineage tracing experiments during development and tracheal epithelial repair. The authors isolated similar cells from human tracheas and showed that both murine and human cells can be cultured as tracheospheres in three-dimensional Matrigel-containing transwells.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Hegab, A. E. et al. Novel stem/progenitor cell population from murine tracheal submucosal gland ducts with multipotent regenerative potential. Stem Cells 29, 1283–1293 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Rock, J. R. & Hogan, B. L. M. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu. Rev. Cell Dev. Biol. 27, 493–512 (2011).

    Article  CAS  PubMed  Google Scholar 

  139. Rawlins, E. L. et al. The role of Scgb1a1+ Clara cells in the long-term maintenance and repair of lung airway, but not alveolar, epithelium. Cell Stem Cell 4, 525–534 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Teixeira, V. H. et al. Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors. eLife 2, http://dx.doi.org/10.7554/eLife.00966#sthash.XxrCqaIk.dpuf (2013).

  141. Teisanu, R. M., Lagasse, E., Whitesides, J. F. & Stripp, B. R. Prospective Isolation of Bronchiolar Stem Cells Based Upon Immunophenotypic and Autofluorescence Characteristics. Stem Cells 27, 612–622 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Barkauskas, C. E. et al. Type 2 alveolar cells are stem cells in adult lung. J. Clin. Invest. 123, 3025–3036 (2013). This study was the first to show that AT2 cells can function as facultative stem or progenitor cells in the adult lung to differentiate into both AT2 and AT1 lineages after injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Chapman, H. A. et al. Integrin α6β4 identifies an adult distal lung epithelial population with regenerative potential in mice. J. Clin. Invest. 121, 2855–2862 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tropea, K. A. et al. Bronchioalveolar stem cells increase after mesenchymal stromal cell treatment in a mouse model of bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell. Mol. Physiol. 302, L829–L837 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Zacharek, S. J. et al. Lung stem cell self-renewal relies on BMI1-dependent control of expression at imprinted loci. Cell Stem Cell 9, 272–281 (2010).

    Article  CAS  Google Scholar 

  146. Rock, J. R. et al. Multiple stromal populations contribute to pulmonary fibrosis without evidence for epithelial to mesenchymal transition. Proc. Natl Acad. Sci. USA 108, E1475–E1483 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  147. McQualter, J. L., Yuen, K., Williams, B. & Bertoncello, I. Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc. Natl Acad. Sci. USA 107, 1414–1419 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Hegab, A. E. et al. Isolation and in vitro characterization of basal and submucosal gland duct stem/progenitor cells from human proximal airways. Stem Cells Translat. Med. 1, 719–724 (2012).

    Article  CAS  Google Scholar 

  149. Kajstura, J. et al. Evidence for human lung stem cells. New Engl. J. Med. 364, 1795–1806 (2011).

    Article  CAS  PubMed  Google Scholar 

  150. Marek, L. et al. Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine signaling in non-small-cell lung cancer cells. Mol. Pharmacol. 75, 196–207 (2009).

    Article  CAS  PubMed  Google Scholar 

  151. Liao, R. G. et al. Inhibitor-sensitive FGFR2 and FGFR3 mutations in lung squamous cell carcinoma. Cancer Res. 73, 5195–5205 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Xu, L. et al. Combined EGFR/MET or EGFR/HSP90 inhibition is effective in the treatment of lung cancers codriven by mutant EGFR containing T790M and MET. Cancer Res. 72, 3302–3311 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Davies, K. D. et al. Identifying and targeting ROS1 gene fusions in non-small cell lung cancer. Clin. Cancer Res. 18, 4570–4579 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Takeuchi, K. et al. RET, ROS1 and ALK fusions in lung cancer. Nature Med. 18, 378–381 (2012).

    Article  CAS  PubMed  Google Scholar 

  155. Wang, S. E. et al. HER2 kinase domain mutation results in constitutive phosphorylation and activation of HER2 and EGFR and resistance to EGFR tyrosine kinase inhibitors. Cancer Cell 10, 25–38 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. McDermott, U. et al. Ligand-dependent platelet-derived growth factor receptor (PDGFR)-α activation sensitizes rare lung cancer and sarcoma cells to PDGFR kinase inhibitors. Cancer Res. 69, 3937–3946 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jackson, E. L. et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 15, 3243–3248 (2001). GEMMs of lung cancer have been developed largely based on this prototypical study, in which the Cre-Lox system was used to induce oncogenic Kras expression specifically in the lung through Adeno-Cre intranasal instillation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Mascaux, C. et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br. J. Cancer 92, 131–139 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. De Raedt, T. et al. Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. Cancer Cell 20, 400–413 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Paik, P. K. et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J. Clin. Oncol. 29, 2046–2051 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Kawano, O. et al. PIK3CA mutation status in Japanese lung cancer patients. Lung Cancer 54, 209–215 (2006).

    Article  PubMed  Google Scholar 

  162. Marks, J. L. et al. Novel MEK1 mutation identified by mutational analysis of epidermal growth factor receptor signaling pathway genes in lung adenocarcinoma. Cancer Res. 68, 5524–5528 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Licciulli, S. et al. Notch1 is required for Kras-induced lung adenocarcinoma and controls tumor cell survival via p53. Cancer Res. 73, 5974–5984 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Westhoff, B. et al. Alterations of the Notch pathway in lung cancer. Proc. Natl Acad. Sci. USA 106, 22293–22298 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Issaeva, I. et al. Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol. Cell. Biol. 27, 1889–1903 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Takawa, M. et al. Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker. Cancer Sci. 102, 1298–1305 (2011).

    Article  CAS  PubMed  Google Scholar 

  167. Yang, H. et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32, 663–669 (2013).

    Article  CAS  PubMed  Google Scholar 

  168. Gao, Q. et al. Deletion of the de novo DNA methyltransferase Dnmt3a promotes lung tumor progression. Proc. Natl Acad. Sci. USA 108, 18061–18066 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Ohta, T. et al. Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res. 68, 1303–1309 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Singh, A. et al. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 3, e420 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Wang, Y., Zhang, Z., Kastens, E., Lubet, R. A. & You, M. Mice with alterations in both p53 and Ink4a/Arf display a striking increase in lung tumor multiplicity and progression: differential chemopreventive effect of budesonide in wild-type and mutant A/J mice. Cancer Res. 63, 4389–4395 (2003).

    CAS  PubMed  Google Scholar 

  172. Lou-Qian, Z. et al. The prognostic value of epigenetic silencing of p16 gene in NSCLC patients: a systematic review and meta-analysis. PLoS ONE 8, e54970 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Mitsudomi, T., Hamajima, N., Ogawa, M. & Takahashi, T. Prognostic significance of p53 alterations in patients with non-small cell lung cancer: a meta-analysis. Clin. Cancer Res. 6, 4055–4063 (2000).

    CAS  PubMed  Google Scholar 

  174. Sanchez-Cespedes, M. et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. 62, 3659–3662 (2002).

    CAS  PubMed  Google Scholar 

  175. Iwanaga, K. et al. Pten inactivation accelerates oncogenic K-ras-initiated tumorigenesis in a mouse model of lung cancer. Cancer Res. 68, 1119–1127 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Soria, J. C. et al. Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation. Clin. Cancer Res. 8, 1178–1184 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank United Against Lung Cancer, Thoracic Foundation, Bonnie J Addario Lung Cancer Foundation, Claudia Adams Barr Program For Basic Cancer Research, grant numbers CA122794, CA166480, CA163896, CA154303, CA120964 CA140594.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter S. Hammerman, Carla F. Kim or Kwok-Kin Wong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

DATABASES

My Cancer Genome

PowerPoint slides

Glossary

Myeloid-derived suppressor cells

(MDSCs). MDSCs encompass a heterogeneous population of myeloid cells, which share the ability to suppress T cells through the production of arginase and the expression of inducible nitric oxide synthase (iNOS).

Pseudostratified epithelium

This describes the epithelium of the trachea, which is truly a monolayer but appears to have some stratification due to the variable distances of the nuclei from the basal lamina.

Patient-derived xenograft

(PDX). Primary tumour cells from fresh patient tumours that are propagated subcutaneously in immunocompromised mice.

EGFR-T790M

The most common mutation (50%) in the epidermal growth factor receptor (EGFR) gene that confers resistance to EGFR tyrosine kinase inhibitors such as erlotinib and gefitinib.

Cytotoxic T lymphocyte protein 4

(CTLA4; also known as CD152). A surface receptor that transmits inhibitory signals to T cells.

CD73

A cell surface enzyme that generates extracellular adenosine, which inhibits T cell function.

CD47

The receptor for thrombospondin 1 (TSP1). CD47 is highly expressed in many tumour cells.

Chimeric antigen receptors

(CARs). Genetically engineered receptors that result in desired specificity (to tumour cells) in effector T cells.

CpG island methylator phenotype

(CIMP). Reflects the genomic status that multiple CpG islands are methylated simultaneously, leading to epigenetic inactivation of different genes, including tumour suppressors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Fillmore, C., Hammerman, P. et al. Non-small-cell lung cancers: a heterogeneous set of diseases. Nat Rev Cancer 14, 535–546 (2014). https://doi.org/10.1038/nrc3775

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3775

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing