Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Krüppel-like factors in cancer

Key Points

  • The Krüppel-like factors (KLFs) are a family of transcriptional regulators linked by a triple zinc finger DNA-binding domain.

  • In normal tissues, KLFs control a broad number of key cellular processes, including proliferation, differentiation, migration, inflammation and pluripotency.

  • KLF expression and function are altered in a large number of human cancers, and KLFs regulate cancer cell proliferation and apoptosis, metastasis, tumour microenvironment and cancer stem cells.

  • KLFs have context-dependent functions, partly mediated by molecular switches, such as p53, p21 or SIN3 transcription regulator homologue A (SIN3A), alternative splicing and post-translational modifications.

  • KLFs cross-regulate and compensate for each other in cancer, although these functions remain to be fully defined.

  • Understanding the mechanisms of KLF function in cancer will probably lead to new translational discoveries for cancer diagnosis and treatment.

Abstract

Krüppel-like factors (KLFs) are a family of DNA-binding transcriptional regulators with diverse and essential functions in a multitude of cellular processes, including proliferation, differentiation, migration, inflammation and pluripotency. In this Review, we discuss the roles and regulation of the 17 known KLFs in various cancer-relevant processes. Importantly, the functions of KLFs are context dependent, with some KLFs having different roles in normal cells and cancer, during cancer development and progression and in different cancer types. We also identify key questions for the field that are likely to lead to important new translational research and discoveries in cancer biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural relationships of KLFs.
Figure 2: p21, p53 and SIN3A are molecular switches for KLF function.
Figure 3: KLF splice variants antagonize wild-type function.
Figure 4: Post-translational modifications alter KLF function.
Figure 5: KLFs control cancer cell proliferation by targeting cell cycle regulators.
Figure 6: KLFs have diverse effects on cancer cells and the tumour microenvironment.

Similar content being viewed by others

References

  1. Miller, I. J. & Bieker, J. J. A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Kruppel family of nuclear proteins. Mol. Cell. Biol. 13, 2776–2786 (1993). This is the identification of the founding member of the KLF family, erythroid Krüppel-like factor KLF1, named for its homology to the Drosophila melanogaster protein Krüppel.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. McConnell, B. B. & Yang, V. W. Mammalian Kruppel-like factors in health and diseases. Physiol. Rev. 90, 1337–1381 (2010). This is an excellent overview of KLFs and their functional regulation.

    Article  CAS  PubMed  Google Scholar 

  3. Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1, 39–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Jiang, J. et al. A core Klf circuitry regulates self-renewal of embryonic stem cells. Nature Cell Biol. 10, 353–360 (2008). KLFs have redundant functions and can compensate for KLF4 loss in pluripotency.

    Article  CAS  PubMed  Google Scholar 

  5. Yang, Y. & Katz, J. P. in The Biology of Krüppel-like Factors (eds. Nagai, R. F., Friedman, S. L. & Kasuga, M.) 67–82 (Springer, 2009).

    Book  Google Scholar 

  6. Dereeper, A. et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res. 36, W465–W469 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Camacho-Vanegas, O. et al. Shaking the family tree: identification of novel and biologically active alternatively spliced isoforms across the KLF family of transcription factors. FASEB J. 27, 432–436 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, Y., Tarapore, R. S., Jarmel, M. H., Tetreault, M. P. & Katz, J. P. p53 mutation alters the effect of the esophageal tumor suppressor KLF5 on keratinocyte proliferation. Cell Cycle 11, 4033–4039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rowland, B. D., Bernards, R. & Peeper, D. S. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nature Cell Biol. 7, 1074–1082 (2005). p21 can act as a molecular switch for KLF4 oncogenic function in breast cancers.

    Article  CAS  PubMed  Google Scholar 

  10. Fernandez-Zapico, M. E. et al. An mSin3A interaction domain links the transcriptional activity of KLF11 with its role in growth regulation. EMBO J. 22, 4748–4758 (2003). The SIN3A interacting domain is crucial for KLF11 repressive function in cell growth and neoplastic transformation, providing a mechanism by which some KLFs function predominantly as transcriptional activators, whereas others are mainly repressors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ellenrieder, V. et al. KLF11 mediates a critical mechanism in TGF-beta signaling that is inactivated by Erk-MAPK in pancreatic cancer cells. Gastroenterology 127, 607–620 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Yang, Y. et al. Loss of transcription factor KLF5 in the context of p53 ablation drives invasive progression of human squamous cell cancer. Cancer Res. 71, 6475–6484 (2011). This paper and reference 8 demonstrate that p53 can act as a molecular switch for KLF5 function in proliferation and transformation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Costa, R. H. FoxM1 dances with mitosis. Nature Cell Biol. 7, 108–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Yang, W. T. & Zheng, P. S. Kruppel-like factor 4 functions as a tumor suppressor in cervical carcinoma. Cancer 118, 3691–3702 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Ohnishi, S. et al. Downregulation and growth inhibitory effect of epithelial-type Kruppel-like transcription factor KLF4, but not KLF5, in bladder cancer. Biochem. Biophys. Res. Commun. 308, 251–256 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Li, Q. et al. Dysregulated Kruppel-like factor 4 and vitamin D receptor signaling contribute to progression of hepatocellular carcinoma. Gastroenterology 143, 799–810 e1–2 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, N. et al. Kruppel-like factor 4 negatively regulates beta-catenin expression and inhibits the proliferation, invasion and metastasis of gastric cancer. Int. J. Oncol. 40, 2038–2048 (2012).

    CAS  PubMed  Google Scholar 

  18. Chen, Z. Y., Shie, J. L. & Tseng, C. C. Gut-enriched Kruppel-like factor represses ornithine decarboxylase gene expression and functions as checkpoint regulator in colonic cancer cells. J. Biol. Chem. 277, 46831–46839 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Gamper, A. M. et al. Regulation of KLF4 turnover reveals an unexpected tissue-specific role of pVHL in tumorigenesis. Mol. Cell 45, 233–243 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu, T. et al. Regulation of the potential marker for intestinal cells, Bmi1, by beta-catenin and the zinc finger protein KLF4: implications for colon cancer. J. Biol. Chem. 287, 3760–3768 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Shum, C. K. et al. Kruppel-like factor 4 (KLF4) suppresses neuroblastoma cell growth and determines non-tumorigenic lineage differentiation. Oncogene http://dx.doi.org/10.1038/onc.2012.437 (2012).

  22. Nakahara, Y. et al. Genetic and epigenetic inactivation of Kruppel-like factor 4 in medulloblastoma. Neoplasia 12, 20–27 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu, W. et al. Putative tumor-suppressive function of Kruppel-like factor 4 in primary lung carcinoma. Clin. Cancer Res. 15, 5688–5695 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wei, D., Kanai, M., Jia, Z., Le, X. & Xie, K. Kruppel-like factor 4 induces p27Kip1 expression in and suppresses the growth and metastasis of human pancreatic cancer cells. Cancer Res. 68, 4631–4639 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zammarchi, F. et al. KLF4 is a novel candidate tumor suppressor gene in pancreatic ductal carcinoma. Am. J. Pathol. 178, 361–372 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kong, X. et al. Dysregulated expression of FOXM1 isoforms drive progression of pancreatic cancer. Cancer Res. 69, 3987–3996 (2013).

    Article  CAS  Google Scholar 

  27. Wei, D. et al. KLF4alpha up-regulation promotes cell cycle progression and reduces survival time of patients with pancreatic cancer. Gastroenterology 139, 2135–2145 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. DiFeo, A., Martignetti, J. A. & Narla, G. The role of KLF6 and its splice variants in cancer therapy. Drug Resist. Updat. 12, 1–7 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Yoon, H. S., Chen, X. & Yang, V. W. Kruppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. J. Biol. Chem. 278, 2101–2105 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Shie, J. L., Chen, Z. Y., Fu, M., Pestell, R. G. & Tseng, C. C. Gut-enriched Kruppel-like factor represses cyclin D1 promoter activity through Sp1 motif. Nucleic Acids Res. 28, 2969–2976 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yoon, H. S. & Yang, V. W. Requirement of Kruppel-like factor 4 in preventing entry into mitosis following DNA damage. J. Biol. Chem. 279, 5035–5041 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Yoon, H. S. et al. Kruppel-like factor 4 prevents centrosome amplification following gamma-irradiation-induced DNA damage. Oncogene 24, 4017–4025 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Evans, P. M. et al. Kruppel-like factor 4 is acetylated by p300 and regulates gene transcription via modulation of histone acetylation. J. Biol. Chem. 282, 33994–34002 (2007). This article highlights the role of cofactors and epigenetic changes in KLF4 function.

    Article  CAS  PubMed  Google Scholar 

  34. Katz, J. P. et al. Loss of Klf4 in mice causes altered proliferation and differentiation and precancerous changes in the adult stomach. Gastroenterology 128, 935–945 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Li, Q. et al. Disruption of Klf4 in villin-positive gastric progenitor cells promotes formation and progression of tumors of the antrum in mice. Gastroenterology 142, 531–542 (2012). Disruption of KLF4 in a putative gastric stem cell population leads to gastric cancer.

    Article  CAS  PubMed  Google Scholar 

  36. Tetreault, M. P. et al. Esophageal squamous cell dysplasia and delayed differentiation with deletion of kruppel-like factor 4 in murine esophagus. Gastroenterology 139, 171–181 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Akaogi, K. et al. KLF4 suppresses estrogen-dependent breast cancer growth by inhibiting the transcriptional activity of ERalpha. Oncogene 28, 2894–2902 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Yori, J. L. et al. Kruppel-like factor 4 inhibits tumorigenic progression and metastasis in a mouse model of breast cancer. Neoplasia 13, 601–610 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rowland, B. D. & Peeper, D. S. KLF4, 21 and context-dependent opposing forces in cancer. Nature Rev. Cancer 6, 11–23 (2006).

    Article  CAS  Google Scholar 

  40. Hu, D., Zhou, Z., Davidson, N. E., Huang, Y. & Wan, Y. Novel insight into KLF4 proteolytic regulation in estrogen receptor signaling and breast carcinogenesis. J. Biol. Chem. 287, 13584–13597 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen, C. et al. KLF5 promotes cell proliferation and tumorigenesis through gene regulation and the TSU-Pr1 human bladder cancer cell line. Int. J. Cancer 118, 1346–1355 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Mori, A. et al. Up-regulation of Kruppel-like factor 5 in pancreatic cancer is promoted by interleukin-1beta signaling and hypoxia-inducible factor-1alpha. Mol. Cancer Res. 7, 1390–1398 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Yagi, N. et al. A nanoparticle system specifically designed to deliver short interfering RNA inhibits tumor growth in vivo. Cancer Res. 69, 6531–6538 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Nandan, M. O. et al. Kruppel-like factor 5 mediates cellular transformation during oncogenic KRAS-induced intestinal tumorigenesis. Gastroenterology 134, 120–130 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. McConnell, B. B. et al. Haploinsufficiency of Kruppel-like factor 5 rescues the tumor-initiating effect of the Apc(Min) mutation in the intestine. Cancer Res. 69, 4125–4133 (2009). Haploinsufficiency of Klf5 results in a remarkable 96% reduction in the number of intestinal adenomas in ApcMin mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nandan, M. O. et al. Kruppel-like factor 5 is a crucial mediator of intestinal tumorigenesis in mice harboring combined ApcMin and KRASV12 mutations. Mol. Cancer 9, 63 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, R., Zhou, Z., Zhao, D. & Chen, C. The induction of KLF5 transcription factor by progesterone contributes to progesterone-induced breast cancer cell proliferation and dedifferentiation. Mol. Endocrinol. 25, 1137–1144 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takagi, K. et al. Kruppel-like factor 5 in human breast carcinoma: a potent prognostic factor induced by androgens. Endocr. Relat. Cancer 19, 741–750 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Bateman, N. W., Tan, D., Pestell, R. G., Black, J. D. & Black, A. R. Intestinal tumor progression is associated with altered function of KLF5. J. Biol. Chem. 279, 12093–12101 (2004). KLF5 function is highly context dependent, a feature common to many KLFs.

    Article  CAS  PubMed  Google Scholar 

  50. Edlund, K. et al. Data-driven unbiased curation of the TP53 tumor suppressor gene mutation database and validation by ultradeep sequencing of human tumors. Proc. Natl Acad. Sci. USA 109, 9551–9556 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Du, J. X., Bialkowska, A. B., McConnell, B. B. & Yang, V. W. SUMOylation regulates nuclear localization of Kruppel-like factor 5. J. Biol. Chem. 283, 31991–32002 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Oishi, Y. et al. SUMOylation of Kruppel-like transcription factor 5 acts as a molecular switch in transcriptional programs of lipid metabolism involving PPAR-delta. Nature Med. 14, 656–666 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Chen, C. et al. Human Kruppel-like factor 5 is a target of the E3 ubiquitin ligase WWP1 for proteolysis in epithelial cells. J. Biol. Chem. 280, 41553–41561 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Zhao, D., Zheng, H. Q., Zhou, Z. & Chen, C. The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation. Cancer Res. 70, 4728–4738 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Kremer-Tal, S. et al. Frequent inactivation of the tumor suppressor Kruppel-like factor 6 (KLF6) in hepatocellular carcinoma. Hepatology 40, 1047–1052 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Narla, G. et al. KLF6, a candidate tumor suppressor gene mutated in prostate cancer. Science 294, 2563–2566 (2001). KLF6 is a putative tumour suppressor in prostate cancer.

    Article  CAS  PubMed  Google Scholar 

  57. Reeves, H. L. et al. Kruppel-like factor 6 (KLF6) is a tumor-suppressor gene frequently inactivated in colorectal cancer. Gastroenterology 126, 1090–1103 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Narla, G. et al. Targeted inhibition of the KLF6 splice variant, KLF6 SV1, suppresses prostate cancer cell growth and spread. Cancer Res. 65, 5761–5768 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Teixeira, M. S. et al. KLF6 allelic loss is associated with tumor recurrence and markedly decreased survival in head and neck squamous cell carcinoma. Int. J. Cancer 121, 1976–1983 (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Li, D. et al. Regulation of Kruppel-like factor 6 tumor suppressor activity by acetylation. Cancer Res. 65, 9216–9225 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. Lang, U. E. et al. GSK3beta phosphorylation of the KLF6 tumor suppressor promotes its transactivation of p21. Oncogene http://dx.doi.org/10.1038/onc.2012.457 (2012).

  62. Tahara, E., Kadara, H., Lacroix, L., Lotan, D. & Lotan, R. Activation of protein kinase C by phorbol 12-myristate 13-acetate suppresses the growth of lung cancer cells through KLF6 induction. Cancer Biol. Ther. 8, 801–807 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. Sangodkar, J. et al. Targeted reduction of KLF6-SV1 restores chemotherapy sensitivity in resistant lung adenocarcinoma. Lung Cancer 66, 292–297 (2009).

    Article  PubMed  Google Scholar 

  64. Narla, G. et al. A germline DNA polymorphism enhances alternative splicing of the KLF6 tumor suppressor gene and is associated with increased prostate cancer risk. Cancer Res. 65, 1213–1222 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Vetter, D. et al. Enhanced hepatocarcinogenesis in mouse models and human hepatocellular carcinoma by coordinate KLF6 depletion and increased messenger RNA splicing. Hepatology 56, 1361–1370 (2012).

    Article  CAS  PubMed  Google Scholar 

  66. Hanoun, N. et al. The SV2 variant of KLF6 is down-regulated in hepatocellular carcinoma and displays anti-proliferative and pro-apoptotic functions. J. Hepatol 53, 880–888 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Munoz, U. et al. Hepatocyte growth factor enhances alternative splicing of the Kruppel-like factor 6 (KLF6) tumor suppressor to promote growth through SRSF1. Mol. Cancer Res. 10, 1216–1227 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Yea, S. et al. Ras promotes growth by alternative splicing-mediated inactivation of the KLF6 tumor suppressor in hepatocellular carcinoma. Gastroenterology 134, 1521–1531 (2008).

    Article  CAS  PubMed  Google Scholar 

  69. Song, K. D., Kim, D. J., Lee, J. E., Yun, C. H. & Lee, W. K. KLF10, transforming growth factor-beta-inducible early gene 1, acts as a tumor suppressor. Biochem. Biophys. Res. Commun. 419, 388–394 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Nakamura, Y. et al. Kruppel-like factor 12 plays a significant role in poorly differentiated gastric cancer progression. Int. J. Cancer 125, 1859–1867 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Henson, B. J. & Gollin, S. M. Overexpression of KLF13 and FGFR3 in oral cancer cells. Cytogenet. Genome Res. 128, 192–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nemer, M. & Horb, M. E. The KLF family of transcriptional regulators in cardiomyocyte proliferation and differentiation. Cell Cycle 6, 117–121 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Clevers, H. Wnt/β-Catenin Signaling in Development and Disease. Cell 127, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Sellak, H., Wu, S. & Lincoln, T. M. KLF4 and SOX9 transcription factors antagonize β-catenin and inhibit TCF-activity in cancer cells. Biochim. Biophys. Acta (BBA) - Mol. Cell Res. 1823, 1666–1675 (2012).

    Article  CAS  Google Scholar 

  75. Evans, P. M., Chen, X., Zhang, W. & Liu, C. KLF4 interacts with beta-catenin/TCF4 and blocks p300/CBP recruitment by beta-catenin. Mol. Cell. Biol. 30, 372–381 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Ghaleb, A. M. et al. Haploinsufficiency of Kruppel-like factor 4 promotes adenomatous polyposis coli dependent intestinal tumorigenesis. Cancer Res. 67, 7147–7154 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wei, D. et al. Drastic down-regulation of Kruppel-like factor 4 expression is critical in human gastric cancer development and progression. Cancer Res. 65, 2746–2754 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. McConnell, B. B. et al. Kruppel-like factor 5 is important for maintenance of crypt architecture and barrier function in mouse intestine. Gastroenterology 141, 1302–1313, e1–6 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. DiFeo, A. et al. E-cadherin is a novel transcriptional target of the KLF6 tumor suppressor. Oncogene 25, 6026–6031 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Kremer-Tal, S. et al. Downregulation of KLF6 is an early event in hepatocarcinogenesis, and stimulates proliferation while reducing differentiation. J. Hepatol 46, 645–654 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Lahiri, S. K. & Zhao, J. Kruppel-like factor 8 emerges as an important regulator of cancer. Am. J. Transl. Res. 4, 357–363 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Yang, T. et al. Kruppel-like factor 8 is a new Wnt/beta-catenin signaling target gene and regulator in hepatocellular carcinoma. PLoS ONE 7, e39668 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Schnell, O. et al. Kruppel-like factor 8 (KLF8) is expressed in gliomas of different WHO grades and is essential for tumor cell proliferation. PLoS ONE 7, e30429 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chen, G. et al. Lentivirus-mediated gene silencing of KLF8 reduced the proliferation and invasion of gastric cancer cells. Mol. Biol. Rep. 39, 9809–9815 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Fernandez-Zapico, M. E. et al. A functional family-wide screening of SP/KLF proteins identifies a subset of suppressors of KRAS-mediated cell growth. Biochem. J. 435, 529–537 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Nandan, M. O. et al. Kruppel-like factor 5 mediates the transforming activity of oncogenic H-Ras. Oncogene 23, 3404–3413 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang, Y., Goldstein, B. G., Nakagawa, H. & Katz, J. P. Kruppel-like factor 5 activates MEK/ERK signaling via EGFR in primary squamous epithelial cells. FASEB J. 21, 543–550 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Huh, S. J. et al. KLF6 gene and early melanoma development in a collagen I-rich extracellular environment. J. Natl Cancer Inst. 102, 1131–1147 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Simmen, R. C. et al. The emerging role of Kruppel-like factors in endocrine-responsive cancers of female reproductive tissues. J. Endocrinol. 204, 223–231 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Chen, C., Bhalala, H. V., Qiao, H. & Dong, J. T. A possible tumor suppressor role of the KLF5 transcription factor in human breast cancer. Oncogene 21, 6567–6572 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Zheng, H. Q. et al. Kruppel-like factor 5 promotes breast cell proliferation partially through upregulating the transcription of fibroblast growth factor binding protein 1. Oncogene 28, 3702–3713 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Guo, P. et al. Estrogen-induced interaction between KLF5 and estrogen receptor (ER) suppresses the function of ER in ER-positive breast cancer cells. Int. J. Cancer 126, 81–89 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nakajima, Y. et al. Estrogen regulates tumor growth through a nonclassical pathway that includes the transcription factors ERbeta and KLF5. Sci Signal 4, ra22 (2011). Oestrogens and antioestrogens modulate prostate tumour growth through ERβ-mediated regulation of KLF5.

    Article  CAS  PubMed  Google Scholar 

  94. Zhao, K. W. et al. Oestrogen causes degradation of KLF5 by inducing the E3 ubiquitin ligase EFP in ER-positive breast cancer cells. Biochem. J. 437, 323–333 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Liu, J. et al. KLF6 inhibits estrogen receptor-mediated cell growth in breast cancer via a c-Src-mediated pathway. Mol. Cell Biochem. 335, 29–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  96. Kumar, N. S. et al. Selective down-regulation of progesterone receptor isoform B in poorly differentiated human endometrial cancer cells: implications for unopposed estrogen action. Cancer Res. 58, 1860–1865 (1998).

    CAS  PubMed  Google Scholar 

  97. Zhang, X. L. et al. Selective interactions of Kruppel-like factor 9/basic transcription element-binding protein with progesterone receptor isoforms A and B determine transcriptional activity of progesterone-responsive genes in endometrial epithelial cells. J. Biol. Chem. 278, 21474–21482 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Velarde, M. C., Zeng, Z., McQuown, J. R., Simmen, F. A. & Simmen, R. C. Kruppel-like factor 9 is a negative regulator of ligand-dependent estrogen receptor alpha signaling in Ishikawa endometrial adenocarcinoma cells. Mol. Endocrinol. 21, 2988–3001 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Simmons, C. D. et al. Kruppel-like factor 9 loss-of-expression in human endometrial carcinoma links altered expression of growth-regulatory genes with aberrant proliferative response to estrogen. Biol. Reprod. 85, 378–385 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Simmen, F. A., Su, Y., Xiao, R., Zeng, Z. & Simmen, R. C. The Kruppel-like factor 9 (KLF9) network in HEC-1-A endometrial carcinoma cells suggests the carcinogenic potential of dys-regulated KLF9 expression. Reprod. Biol. Endocrinol. 6, 41 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ray, S. & Pollard, J. W. KLF15 negatively regulates estrogen-induced epithelial cell proliferation by inhibition of DNA replication licensing. Proc. Natl Acad. Sci. 109, E1334–E1343 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Goldstein, B. G. et al. Overexpression of Kruppel-like factor 5 in esophageal epithelia in vivo leads to increased proliferation in basal but not suprabasal cells. Am. J. Physiol. Gastrointest Liver Physiol. 292, G1784–1792 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Ikushima, H. & Miyazono, K. TGF-β signalling: a complex web in cancer progression. Nature Rev. Cancer 10, 415–424 (2010).

    Article  CAS  Google Scholar 

  104. Guo, P. et al. Pro-proliferative factor KLF5 becomes anti-proliferative in epithelial homeostasis upon signaling-mediated modification. J. Biol. Chem. 284, 6071–6078 (2009). TGFβ can alter KLF5 function via signalling-mediated post-translational modification.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guo, P. et al. Opposing effects of KLF5 on the transcription of MYC in epithelial proliferation in the context of transforming growth factor beta. J. Biol. Chem. 284, 28243–28252 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Jiang, L. et al. Down-regulation of stathmin is required for TGF-beta inducible early gene 1 induced growth inhibition of pancreatic cancer cells. Cancer Lett. 274, 101–108 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Jiang, L. et al. Transactivation of the TIEG1 confers growth inhibition of transforming growth factor-beta-susceptible hepatocellular carcinoma cells. World J. Gastroenterol. 18, 2035–2042 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Buck, A. et al. The tumor suppressor KLF11 mediates a novel mechanism in transforming growth factor beta-induced growth inhibition that is inactivated in pancreatic cancer. Mol. Cancer Res. 4, 861–872 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Zhang, J. S. et al. A conserved alpha-helical motif mediates the interaction of Sp1-like transcriptional repressors with the corepressor mSin3A. Mol. Cell. Biol. 21, 5041–5049 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ohashi, S. et al. A NOTCH3-mediated squamous cell differentiation program limits expansion of EMT-competent cells that express the ZEB transcription factors. Cancer Res. 71, 6836–6847 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Miele, L. Notch signaling. Clin. Cancer Res. 12, 1074–1079 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Lambertini, C., Pantano, S. & Dotto, G. P. Differential control of Notch1 gene transcription by Klf4 and Sp3 transcription factors in normal versus cancer-derived keratinocytes. PLoS ONE 5, e10369 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu, Z. et al. Epithelial transformation by KLF4 requires Notch1 but not canonical Notch1 signaling. Cancer Biol. Ther. 8, 1840–1851 (2009).

    Article  CAS  PubMed  Google Scholar 

  114. Ghaleb, A. M., Aggarwal, G., Bialkowska, A. B., Nandan, M. O. & Yang, V. W. Notch inhibits expression of the Kruppel-like factor 4 tumor suppressor in the intestinal epithelium. Mol. Cancer Res. 6, 1920–1927 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dang, D. T. et al. Overexpression of Kruppel-like factor 4 in the human colon cancer cell line RKO leads to reduced tumorigenecity. Oncogene 22, 3424–3430 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lin, Z. S., Chu, H. C., Yen, Y. C., Lewis, B. C. & Chen, Y. W. Kruppel-like factor 4, a tumor suppressor in hepatocellular carcinoma cells reverts epithelial mesenchymal transition by suppressing slug expression. PLoS ONE 7, e43593 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Foster, K. W. et al. Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene 24, 1491–1500 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li, J. et al. Deficiency of the Kruppel-like factor KLF4 correlates with increased cell proliferation and enhanced skin tumorigenesis. Carcinogenesis 33, 1239–1246 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tetreault, M. P. et al. Klf4 overexpression activates epithelial cytokines and inflammation-mediated esophageal squamous cell cancer in mice. Gastroenterology 139, 2124–2134 (2010). KLF4 in epithelial cells recruits immune cells in an NF-κB-dependent manner resulting in oesophageal dysplasia and cancers. These findings have important implications for the regulation of the microenvironment by KLF4 and other KLFs.

    Article  CAS  PubMed  Google Scholar 

  120. Humbert, M. et al. Deregulated expression of Kruppel-like factors in acute myeloid leukemia. Leuk. Res. 35, 909–913 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Turner, J. & Crossley, M. Basic Krüppel-like factor functions within a network of interacting haematopoietic transcription factors. Int. J. Biochem. Cell Biol. 31, 1169–1174 (1999).

    Article  CAS  PubMed  Google Scholar 

  122. Kharas, M. G. et al. KLF4 suppresses transformation of pre-B cells by ABL oncogenes. Blood 109, 747–755 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tarocchi, M. et al. Carcinogen-induced hepatic tumors in KLF6+/− mice recapitulate aggressive human hepatocellular carcinoma associated with p53 pathway deregulation. Hepatology 54, 522–531 (2011).

    Article  CAS  PubMed  Google Scholar 

  124. Kimmelman, A. C. et al. Suppression of glioblastoma tumorigenicity by the Kruppel-like transcription factor KLF6. Oncogene 23, 5077–5083 (2004).

    Article  CAS  PubMed  Google Scholar 

  125. Lu, H. et al. Transformation of human ovarian surface epithelial cells by Kruppel-like factor 8. Oncogene http://dx.doi.org/10.1038/onc.2012.545 (2012).

  126. Holland, A. J. & Cleveland, D. W. The deubiquitinase USP44 is a tumor suppressor that protects against chromosome missegregation. J. Clin. Invest. 122, 4325–4328 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wang, X. & Zhao, J. KLF8 transcription factor participates in oncogenic transformation. Oncogene 26, 456–461 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Cai, X. D. et al. Reduced expression of Kruppel-like factor 17 is related to tumor growth and poor prognosis in lung adenocarcinoma. Biochem. Biophys. Res. Commun. 418, 67–73 (2012).

    Article  CAS  PubMed  Google Scholar 

  129. Senderowicz, A. M. Targeting cell cycle and apoptosis for the treatment of human malignancies. Curr. Opin. Cell Biol. 16, 670–678 (2004).

    Article  CAS  PubMed  Google Scholar 

  130. Li, Z. et al. KLF4 promotes hydrogen-peroxide-induced apoptosis of chronic myeloid leukemia cells involving the bcl-2/bax pathway. Cell Stress Chaperones 15, 905–912 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mohan, N., Ai, W., Chakrabarti, M., Banik, N. L. & Ray, S. K. KLF4 overexpression and apigenin treatment down regulated anti-apoptotic Bcl-2 proteins and matrix metalloproteinases to control growth of human malignant neuroblastoma SK-N-DZ and IMR-32 cells. Mol. Oncol. 7, 464–474 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zhang, G. et al. Kruppel-like factor 4 represses transcription of the survivin gene in esophageal cancer cell lines. Biol. Chem. 390, 463–469 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Yang, Y., Goldstein, B. G., Chao, H. H. & Katz, J. P. KLF4 and KLF5 regulate proliferation, apoptosis and invasion in esophageal cancer cells. Cancer Biol. Ther. 4, 1216–1221 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Ghaleb, A. M., Katz, J. P., Kaestner, K. H., Du, J. X. & Yang, V. W. Kruppel-like factor 4 exhibits antiapoptotic activity following gamma-radiation-induced DNA damage. Oncogene 26, 2365–2373 (2007).

    Article  CAS  PubMed  Google Scholar 

  135. Zhao, Y. et al. Kruppel-like factor 5 modulates p53-independent apoptosis through Pim1 survival kinase in cancer cells. Oncogene 27, 1–8 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Liu, R., Zheng, H. Q., Zhou, Z., Dong, J. T. & Chen, C. KLF5 promotes breast cell survival partially through fibroblast growth factor-binding protein 1-pERK-mediated dual specificity MKP-1 protein phosphorylation and stabilization. J. Biol. Chem. 284, 16791–16798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Zhu, N. et al. KLF5 Interacts with p53 in regulating survivin expression in acute lymphoblastic leukemia. J. Biol. Chem. 281, 14711–14718 (2006).

    Article  CAS  PubMed  Google Scholar 

  138. Tarapore, R. S., Yang, Y. & Katz, J. P. Restoring KLF5 in esophageal squamous cell cancer cells activates the JNK pathway leading to apoptosis and reduced cell survival. Neoplasia 15, 472–480 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ito, G. et al. Kruppel-like factor 6 is frequently down-regulated and induces apoptosis in non-small cell lung cancer cells. Cancer Res. 64, 3838–3843 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Jianwei, Z., Enzhong, B., Fan, L., Jian, L. & Ning, A. Effects of Kruppel-like factor 6 on osteosarcoma cell biological behavior. Tumour Biol. 34, 1097–1105 (2013).

    Article  CAS  PubMed  Google Scholar 

  141. Huang, X., Li, X. & Guo, B. KLF6 induces apoptosis in prostate cancer cells through up-regulation of ATF3. J. Biol. Chem. 283, 29795–29801 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sirach, E. et al. KLF6 transcription factor protects hepatocellular carcinoma-derived cells from apoptosis. Cell Death Differ. 14, 1202–1210 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Difeo, A. et al. KLF6-SV1 is a novel antiapoptotic protein that targets the BH3-only protein NOXA for degradation and whose inhibition extends survival in an ovarian cancer model. Cancer Res. 69, 4733–4741 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Liu, X. et al. KLF6 loss of function in human prostate cancer progression is implicated in resistance to androgen deprivation. Am. J. Pathol. 181, 1007–1016 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Mannava, S. et al. KLF9 is a novel transcriptional regulator of bortezomib- and LBH589-induced apoptosis in multiple myeloma cells. Blood 119, 1450–1458 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Tachibana, I. et al. Overexpression of the TGFbeta-regulated zinc finger encoding gene, TIEG, induces apoptosis in pancreatic epithelial cells. J. Clin. Invest. 99, 2365–2374 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hsu, C. F. et al. Klf10 induces cell apoptosis through modulation of BI-1 expression and Ca2+ homeostasis in estrogen-responding adenocarcinoma cells. Int. J. Biochem. Cell Biol. 43, 666–673 (2011).

    Article  CAS  PubMed  Google Scholar 

  148. Chang, H. S., Lin, C. H., Yang, C. H., Liang, Y. J. & Yu, W. C. The human papillomavirus-16 (HPV-16) oncoprotein E7 conjugates with and mediates the role of the transforming growth factor-beta inducible early gene 1 (TIEG1) in apoptosis. Int. J. Biochem. Cell Biol. 42, 1831–1839 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Thiery, J. P., Acloque, H., Huang, R. Y. J. & Nieto, M. A. Epithelial-Mesenchymal Transitions in Development and Disease. Cell 139, 871–890 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Yori, J. L., Johnson, E., Zhou, G., Jain, M. K. & Keri, R. A. Kruppel-like factor 4 inhibits epithelial-to-mesenchymal transition through regulation of E-cadherin gene expression. J. Biol. Chem. 285, 16854–16863 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Liu, Y. N. et al. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor beta-initiated prostate cancer epithelial-mesenchymal transition. Mol. Cell. Biol. 32, 941–953 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Tian, Y. et al. MicroRNA-10b promotes migration and invasion through KLF4 in human esophageal cancer cell lines. J. Biol. Chem. 285, 7986–7994 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shimamura, T. et al. A novel network profiling analysis reveals system changes in epithelial-mesenchymal transition. PLoS ONE 6, e20804 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Hatami, R. et al. KLF6-SV1 Drives Breast Cancer Metastasis and Is Associated with Poor Survival. Sci Transl Med 5, 169ra12 (2013). This paper and reference 58 show that the KLF6 splice variant KLF6-SV1 promotes breast and prostate cancer progression. Thus, targeting of KLF6-SV1 may be a useful approach for cancer therapy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Narla, G. et al. KLF6-SV1 overexpression accelerates human and mouse prostate cancer progression and metastasis. J. Clin. Invest. 118, 2711–2721 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. DiFeo, A. et al. Roles of KLF6 and KLF6-SV1 in ovarian cancer progression and intraperitoneal dissemination. Clin. Cancer Res. 12, 3730–3739 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Lee, U. E. et al. Tumor suppressor activity of KLF6 mediated by downregulation of the PTTG1 oncogene. FEBS Lett. 584, 1006–1010 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Yoon, C. H. et al. PTTG1 oncogene promotes tumor malignancy via epithelial to mesenchymal transition and expansion of cancer stem cell population. J. Biol. Chem. 287, 19516–19527 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chen, H. et al. A small interfering RNA targeting the KLF6 splice variant, KLF6-SV1, as gene therapy for gastric cancer. Gastr. Cancer 14, 339–352 (2011).

    Article  CAS  Google Scholar 

  160. Wang, X. et al. KLF8 promotes human breast cancer cell invasion and metastasis by transcriptional activation of MMP9. Oncogene 30, 1901–1911 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Wang, X. et al. Kruppel-like factor 8 induces epithelial to mesenchymal transition and epithelial cell invasion. Cancer Res. 67, 7184–7193 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Li, J. C. et al. Up-regulation of Kruppel-like factor 8 promotes tumor invasion and indicates poor prognosis for hepatocellular carcinoma. Gastroenterology 139, 2146–2157 e12 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Wang, X., Urvalek, A. M., Liu, J. & Zhao, J. Activation of KLF8 transcription by focal adhesion kinase in human ovarian epithelial and cancer cells. J. Biol. Chem. 283, 13934–13942 (2008).

    Article  CAS  PubMed  Google Scholar 

  164. Venkov, C. et al. Transcriptional networks in epithelial-mesenchymal transition. PLoS ONE 6, e25354 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jin, W. et al. TIEG1 inhibits breast cancer invasion and metastasis by inhibition of epidermal growth factor receptor (EGFR) transcription and the EGFR signaling pathway. Mol. Cell. Biol. 32, 50–63 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Subramaniam, M. et al. Tissue, cell type, and breast cancer stage-specific expression of a TGF-beta inducible early transcription factor gene. J. Cell Biochem. 68, 226–236 (1998).

    Article  CAS  PubMed  Google Scholar 

  167. Gumireddy, K. et al. KLF17 is a negative regulator of epithelial-mesenchymal transition and metastasis in breast cancer. Nature Cell Biol. 11, 1297–1304 (2009). KLF17 inhibits EMT in breast cancer via transcriptional repression of Id1.

    Article  CAS  PubMed  Google Scholar 

  168. Liu, F. Y. et al. Down-regulated KLF17 expression is associated with tumor invasion and poor prognosis in hepatocellular carcinoma. Med. Oncol. 30, 425 (2013).

    Article  CAS  PubMed  Google Scholar 

  169. Cao, Z., Sun, X., Icli, B., Wara, A. K. & Feinberg, M. W. Role of Kruppel-like factors in leukocyte development, function, and disease. Blood 116, 4404–4414 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Atkins, G. B. & Jain, M. K. Role of Kruppel-like transcription factors in endothelial biology. Circ. Res. 100, 1686–1695 (2007).

    Article  CAS  PubMed  Google Scholar 

  171. Omotehara, F. et al. Vesnarinone, a differentiation inducing drug, directly activates p21(waf1) gene promoter via Sp1 sites in a human salivary gland cancer cell line. Br. J. Cancer 87, 1042–1046 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Uchida, D. et al. Vesnarinone downregulates CXCR4 expression via upregulation of Kruppel-like factor 2 in oral cancer cells. Mol. Cancer 8, 62 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Yu, F. et al. Deficiency of kruppel-like factor KLF4 in mammary tumor cells inhibits tumor growth and pulmonary metastasis and is accompanied by compromised recruitment of myeloid-derived suppressor cells. Int. J. Cancer http://dx.doi.org/10.1002/ijc.28302 (2013).

  174. Chanchevalap, S. et al. Kruppel-like factor 5 is an important mediator for lipopolysaccharide-induced proinflammatory response in intestinal epithelial cells. Nucleic Acids Res. 34, 1216–1223 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zhang, D. Y. & Friedman, S. L. Fibrosis-dependent mechanisms of hepatocarcinogenesis. Hepatology 56, 769–775 (2012).

    Article  CAS  PubMed  Google Scholar 

  176. Watanabe, K., Ohnishi, S., Manabe, I., Nagai, R. & Kadowaki, T. KLF6 in nonalcoholic fatty liver disease: role of fibrogenesis and carcinogenesis. Gastroenterology 135, 309–312 (2008).

    Article  CAS  PubMed  Google Scholar 

  177. Miele, L. et al. The Kruppel-like factor 6 genotype is associated with fibrosis in nonalcoholic fatty liver disease. Gastroenterology 135, 282–291 e1 (2008).

    Article  CAS  PubMed  Google Scholar 

  178. Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunol. 11, 889–896 (2010).

    Article  CAS  Google Scholar 

  179. Liao, X. et al. Kruppel-like factor 4 regulates macrophage polarization. J. Clin. Invest. 121, 2736–2749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Venuprasad, K. et al. The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nature Immunol. 9, 245–253 (2008).

    Article  CAS  Google Scholar 

  181. Cao, Z. et al. Kruppel-like factor KLF10 targets transforming growth factor-beta1 to regulate CD4(+)CD25(-) T cells and T regulatory cells. J. Biol. Chem. 284, 24914–24924 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Chakroborty, D. et al. Dopamine stabilizes tumor blood vessels by up-regulating angiopoietin 1 expression in pericytes and Kruppel-like factor-2 expression in tumor endothelial cells. Proc. Natl Acad. Sci. USA 108, 20730–20735 (2011). KLF2 regulates tumour angiogenesis.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Madden, S. L. et al. Vascular gene expression in nonneoplastic and malignant brain. Am. J. Pathol. 165, 601–608 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Tang, D. G. Understanding cancer stem cell heterogeneity and plasticity. Cell Res. 22, 457–472 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Yeo, J. C. & Ng, H. H. The transcriptional regulation of pluripotency. Cell Res. 23, 20–32 (2013).

    Article  CAS  PubMed  Google Scholar 

  186. Wong, C. W. et al. Kruppel-like transcription factor 4 contributes to maintenance of telomerase activity in stem cells. Stem Cells 28, 1510–1517 (2010).

    Article  CAS  PubMed  Google Scholar 

  187. Hoffmeyer, K. et al. Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science 336, 1549–1554 (2012).

    Article  CAS  PubMed  Google Scholar 

  188. Leng, Z. et al. Kruppel-like factor 4 acts as an oncogene in colon cancer stem cell-enriched spheroid cells. PLoS ONE 8, e56082 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Yu, F. et al. Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene 30, 2161–2172 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Vaira, V. et al. Regulation of lung cancer metastasis by Klf4-Numb-like signaling. Cancer Res. 73, 2695–2705 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Wellner, U. et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biol. 11, 1487–1495 (2009). miRNA repression of KLF4 and other stemness factors links these factors to EMT and tumorigenicity.

    Article  CAS  PubMed  Google Scholar 

  192. Okuda, H. et al. miR-7 suppresses brain metastasis of breast cancer stem-like cells by modulating KLF4. Cancer Res. 73, 1434–1444 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Nagata, S., Hirano, K., Kanemori, M., Sun, L. T. & Tada, T. Self-renewal and pluripotency acquired through somatic reprogramming to human cancer stem cells. PLoS ONE 7, e48699 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Nishi, M. et al. Induction of cells with cancer stem cell properties from nontumorigenic human mammary epithelial cells by defined reprogramming factors. Oncogene http://dx.doi.org/10.1038/onc.2012.614 (2013).

  195. Zhang, X., Cruz, F. D., Terry, M., Remotti, F. & Matushansky, I. Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene 32, 2249–2260 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Miyoshi, N. et al. Defined factors induce reprogramming of gastrointestinal cancer cells. Proc. Natl Acad. Sci. USA 107, 40–45 (2010).

    Article  PubMed  Google Scholar 

  197. Sarig, R. et al. Mutant p53 facilitates somatic cell reprogramming and augments the malignant potential of reprogrammed cells. J. Exp. Med. 207, 2127–2140 (2010). KLF4 overexpression in cells with mutation or loss of p53 yields aggressive tumours, sounding a cautionary note for reprogramming of cancer cells with p53 mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Huang, D. et al. Isolation and identification of cancer stem-like cells in esophageal carcinoma cell lines. Stem Cells Dev. 18, 465–473 (2009).

    Article  CAS  PubMed  Google Scholar 

  199. Ying, M. et al. Krüppel-like family of transcription factor 9, a differentiation-associated transcription factor, suppresses Notch1 signaling and inhibits glioblastoma-initiating stem cells. Stem Cells 29, 20–31 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lomberk, G. et al. Sequence-specific recruitment of heterochromatin protein 1 via interaction with Kruppel-like factor 11, a human transcription factor involved in tumor suppression and metabolic diseases. J. Biol. Chem. 287, 13026–13039 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Soufi, A., Donahue, G. & Zaret, K. S. Facilitators and impediments of the pluripotency reprogramming factors' initial engagement with the genome. Cell 151, 994–1004 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Bialkowska, A. B. et al. Identification of small-molecule inhibitors of the colorectal cancer oncogene Kruppel-like factor 5 expression by ultrahigh-throughput screening. Mol. Cancer Ther. 10, 2043–2051 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Sangodkar, J. et al. Targeting the FOXO1/KLF6 axis regulates EGFR signaling and treatment response. J. Clin. Invest. 122, 2637–2651 (2012). This paper, along with studies targeting KLF5, provides proof of concept for therapies targeting specific KLFs in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from US National Institutes of Health (NIH) NIDDK R01 DK069984 (to J.P.K.), by NIH NIDDK K99 DK094977 (to M.P.T.) and from the University of Pennsylvania Center for Molecular Studies in Digestive and Liver Diseases (NIH NIDDK P30 DK050306) and NIH NCI P01 CA098101.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Katz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1

Alterations of the KLFs in cancers (PDF 464 kb)

Supplementary information S2

Gene targets of the KLFs in cancer (PDF 384 kb)

PowerPoint slides

Glossary

Cancer stem cells

(CSCs). A subset of cells within a heterogeneous population of cancer cells that are capable of initiating and propagating the tumour.

ApcMin mice

Mice that carry the multiple intestinal neoplasia (Min) point mutation at one Apc allele and that develop intestinal adenomas spontaneously. ApcMin mice are a commonly used model of human familial adenomatous polyposis and human sporadic colorectal cancer.

DMBA and TPA model

A two-stage chemical skin carcinogenesis model using a single dose of the genotoxic carcinogen DMBA, followed by multiple doses of a non-genotoxic tumour-promoter, TPA.

BCR-ABL

A fusion protein that results from the reciprocal translocation between chromosome 9 and chromosome 22 (t(9;22)(q34;q11)) and that is responsible for the induction of chronic myelogenous leukaemia.

Anoikis

Apoptosis triggered by lack of attachment to a substrate.

Epithelial–mesenchymal transition

(EMT). A complex process in which genetic and epigenetic events lead to epithelial cells acquiring a mesenchymal architecture concomitant with increased cell motility. EMT is typically associated with the loss of E-cadherin expression, disruption of cell–cell junctions, and cancer cell invasion and metastasis.

Macrophage polarization

Macrophages can be functionally polarized into M1 and M2 phenotypes. M1 macrophages have a pro-inflammatory role, whereas M2 macrophages have an anti-inflammatory role, promote angiogenesis and favour tumour progression.

Regulatory T cell

(TReg). A member of a population of CD4+FOXP3+CD25high T lymphocytes that seem to have a dual role in cancer progression and accumulate in the tumours and peripheral blood of cancer patients. In some cancers, TReg cells enhance tumour growth by suppressing antitumour immune responses, whereas in other cancers TReg cells limit inflammation that promotes carcinogenesis.

Side population

A subpopulation of cells that, because of increased dye efflux, demonstrates lower staining with the supravital stain Hoechst 33342. Hoechst-low cells are presumed to represent progenitor or stem cells and can be isolated by fluorescence-activated cell sorting.

Pioneer factor

A protein that physically interacts with compacted chromatin, to rapidly facilitate the binding of additional proteins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tetreault, MP., Yang, Y. & Katz, J. Krüppel-like factors in cancer. Nat Rev Cancer 13, 701–713 (2013). https://doi.org/10.1038/nrc3582

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3582

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer