Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Pioneer factors in hormone-dependent cancers

Abstract

Pioneer factors are a special class of transcription factor that can associate with compacted chromatin to facilitate the binding of additional transcription factors. The function of pioneer factors was originally described during development; more recently, they have been implicated in hormone-dependent cancers, such as oestrogen receptor-positive breast cancer and androgen receptor-positive prostate cancer. We discuss the importance of pioneer factors in these specific cancers, the discovery of new putative pioneer factors and the interplay between these proteins in mediating nuclear receptor function in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mode of putative ER pioneer factor function.
Figure 2: Pioneer factor properties that need to be met to constitute a therapeutic target in hormone-dependent cancer.

Similar content being viewed by others

References

  1. Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    Article  CAS  Google Scholar 

  2. Cirillo, L. A. & Zaret, K. S. An early developmental transcription factor complex that is more stable on nucleosome core particles than on free DNA. Mol. Cell 4, 961–969 (1999).

    Article  CAS  Google Scholar 

  3. Sekiya, T. & Zaret, K. S. Repression by Groucho/TLE/Grg proteins: genomic site recruitment generates compacted chromatin in vitro and impairs activator binding in vivo. Mol. Cell 28, 291–303 (2007).

    Article  CAS  Google Scholar 

  4. Cirillo, L. A. et al. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol. Cell 9, 279–289 (2002). References 2 and 4 are two important papers that showed that FOXA proteins can associate with compacted chromatin and can directly alter chromatin accessibility.

    Article  CAS  Google Scholar 

  5. Grossmann, M. E., Huang, H. & Tindall, D. J. Androgen receptor signaling in androgen-refractory prostate cancer. J. Natl Cancer Inst. 93, 1687–1697 (2001).

    Article  CAS  Google Scholar 

  6. Ali, S. & Coombes, R. C. Endocrine-responsive breast cancer and strategies for combating resistance. Nature Rev. Cancer 2, 101–112 (2002).

    Article  Google Scholar 

  7. Kininis, M. et al. Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. Mol. Cell Biol. 27, 5090–5104 (2007).

    Article  CAS  Google Scholar 

  8. Cirillo, L. A. et al. Binding of the winged-helix transcription factor HNF3 to a linker histone site on the nucleosome. EMBO J. 17, 244–254 (1998).

    Article  CAS  Google Scholar 

  9. Clark, K. L., Halay, E. D., Lai, E. & Burley, S. K. Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412–420 (1993).

    Article  CAS  Google Scholar 

  10. Hah, N. et al. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell 145, 622–634 (2011).

    Article  CAS  Google Scholar 

  11. Carroll, J. S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005). This paper provided the first evidence that ER is co-bound by and requires the pioneer factor FOXA1.

    Article  CAS  Google Scholar 

  12. Carroll, J. S. et al. Genome-wide analysis of estrogen receptor binding sites. Nature Genet. 38, 1289–1297 (2006).

    Article  CAS  Google Scholar 

  13. Lin, C. Y. et al. Whole-genome cartography of estrogen receptor alpha binding sites. PLoS Genet. 3, e87 (2007).

    Article  Google Scholar 

  14. Wang, Q. et al. Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138, 245–256 (2009). This paper provided the first global map of AR binding in wild-type and drug-resistant cell lines, revealing important insight into AR-binding dynamics during progression to a castration-resistant phenotype.

    Article  CAS  Google Scholar 

  15. Lupien, M. et al. FoxA1 translates epigenetic signatures into enhancer-driven lineage-specific transcription. Cell 132, 958–970 (2008).

    Article  CAS  Google Scholar 

  16. Hurtado, A., Holmes, K. A., Ross-Innes, C. S., Schmidt, D. & Carroll, J. S. FOXA1 is a key determinant of estrogen receptor function and endocrine response. Nature Genet. 43, 27–33 (2011).

    Article  CAS  Google Scholar 

  17. Laganiere, J. et al. Location analysis of estrogen receptor alpha target promoters reveals that FOXA1 defines a domain of the estrogen response. Proc. Natl Acad. Sci. USA 102, 11651–11656 (2005).

    Article  CAS  Google Scholar 

  18. Wang, Q. et al. A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol. Cell 27, 380–392 (2007).

    Article  Google Scholar 

  19. Augello, M. A., Hickey, T. E. & Knudsen, K. E. FOXA1: master of steroid receptor function in cancer. EMBO J. 30, 3885–3894 (2011).

    Article  CAS  Google Scholar 

  20. Wang, D. et al. Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474, 390–394 (2011).

    Article  CAS  Google Scholar 

  21. Sahu, B. et al. Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J. 30, 3962–3976 (2011).

    Article  CAS  Google Scholar 

  22. Yamaguchi, N. et al. FoxA1 as a lineage-specific oncogene in luminal type breast cancer. Biochem. Biophys. Res. Commun. 365, 711–717 (2008).

    Article  CAS  Google Scholar 

  23. Zhang, C. et al. Definition of a FoxA1 Cistrome that is crucial for G1 to S-phase cell-cycle transit in castration-resistant prostate cancer. Cancer Res. 71, 6738–6748 (2011).

    Article  CAS  Google Scholar 

  24. Lee, C. S., Friedman, J. R., Fulmer, J. T. & Kaestner, K. H. The initiation of liver development is dependent on Foxa transcription factors. Nature 435, 944–947 (2005).

    Article  CAS  Google Scholar 

  25. Li, Z., Tuteja, G., Schug, J. & Kaestner, K. H. Foxa1 and Foxa2 are essential for sexual dimorphism in liver cancer. Cell 148, 72–83 (2012).

    Article  CAS  Google Scholar 

  26. Holmes, K. A. et al. Transducin-like enhancer protein 1 mediates estrogen receptor binding and transcriptional activity in breast cancer cells. Proc. Natl Acad. Sci. USA 109, 2748–2753 (2012).

    Article  CAS  Google Scholar 

  27. Tan, S. K. et al. AP-2gamma regulates oestrogen receptor-mediated long-range chromatin interaction and gene transcription. EMBO J. 30, 2569–2581 (2011).

    Article  CAS  Google Scholar 

  28. Woodfield, G. W., Horan, A. D., Chen, Y. & Weigel, R. J. TFAP2C controls hormone response in breast cancer cells through multiple pathways of estrogen signaling. Cancer Res. 67, 8439–8443 (2007).

    Article  CAS  Google Scholar 

  29. Magnani, L., Ballantyne, E. B., Zhang, X. & Lupien, M. PBX1 genomic pioneer function drives ERalpha signaling underlying progression in breast cancer. PLoS Genet. 7, e1002368 (2011). References 27 and 29 described two novel putative ER pioneer factors, AP2γ and PBX1. Both were shown to co-bind with ER and to be required for ER function.

    Article  CAS  Google Scholar 

  30. Kouros-Mehr, H. et al. GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13, 141–152 (2008).

    Article  CAS  Google Scholar 

  31. Potter, A. S., Casa, A. J. & Lee, A. V. Forkhead box A1 (FOXA1) is a key mediator of insulin-like growth factor I (IGF-I) activity. J. Cell Biochem. 113, 110–121 (2012).

    Article  CAS  Google Scholar 

  32. Perou, C. M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  Google Scholar 

  33. Orso, F. et al. Activator protein-2gamma (AP-2gamma) expression is specifically induced by oestrogens through binding of the oestrogen receptor to a canonical element within the 5'-untranslated region. Biochem. J. 377, 429–438 (2004).

    Article  CAS  Google Scholar 

  34. Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012).

    Article  CAS  Google Scholar 

  35. Serandour, A. A. et al. Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers. Genome Res. 21, 555–565 (2011).

    Article  CAS  Google Scholar 

  36. Badve, S. et al. FOXA1 expression in breast cancer--correlation with luminal subtype A and survival. Clin. Cancer Res. 13, 4415–4421 (2007). This paper showed for the first time that a pioneer factor was prognostic in cancer patients.

    Article  CAS  Google Scholar 

  37. Wolf, I. et al. FOXA1: Growth inhibitor and a favorable prognostic factor in human breast cancer. Int. J. Cancer 120, 1013–1022 (2007).

    Article  CAS  Google Scholar 

  38. Jain, R. K., Mehta, R. J., Nakshatri, H., Idrees, M. T. & Badve, S. S. High-level expression of forkhead-box protein A1 in metastatic prostate cancer. Histopathology 58, 766–772 (2011).

    Article  Google Scholar 

  39. Gee, J. M. et al. Overexpression of TFAP2C in invasive breast cancer correlates with a poorer response to anti-hormone therapy and reduced patient survival. J. Pathol. 217, 32–41 (2009).

    Article  CAS  Google Scholar 

  40. Harrell, J. C. et al. Estrogen receptor positive breast cancer metastasis: altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Res. 66, 9308–9315 (2006).

    Article  CAS  Google Scholar 

  41. Hegde, N. S., Sanders, D. A., Rodriguez, R. & Balasubramanian, S. The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat. Chem. 3, 829 (2011).

    Article  CAS  Google Scholar 

  42. Shears, L., Plowright, L., Harrington, K., Pandha, H. S. & Morgan, R. Disrupting the interaction between HOX and PBX causes necrotic and apoptotic cell death in the renal cancer lines CaKi-2 and 769-P. J. Urol. 180, 2196–2201 (2008).

    Article  Google Scholar 

  43. Morgan, R. et al. Antagonism of HOX/PBX dimer formation blocks the in vivo proliferation of melanoma. Cancer Res. 67, 5806–5813 (2007).

    Article  CAS  Google Scholar 

  44. Kikugawa, T. et al. PLZF regulates Pbx1 transcription and Pbx1-HoxC8 complex leads to androgen-independent prostate cancer proliferation. Prostate 66, 1092–1099 (2006).

    Article  CAS  Google Scholar 

  45. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank G. Brown for help with data analysis and figures, and H. R. Ali for immunohistochemical images. The authors thank members of the Carroll laboratory and D. Odom for reading the manuscript. The authors would like to acknowledge the support of The University of Cambridge, Cancer Research UK and Hutchison Whampoa Limited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason S. Carroll.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Jason S. Carroll's homepage

Glossary

Aromatase inhibitors

Therapies used to treat oestrogen receptor+ patients with breast cancer by decreasing circulating levels of oestrogenic compounds.

Bicalutamide

An anti-androgen used for the treatment of prostate cancer.

Luminal breast cancer

Oestrogen receptor+ breast cancer originating from the luminal cells.

Pioneer factors

Proteins that physically interact with compacted chromatin, to rapidly facilitate the binding of additional proteins.

Tamoxifen

Anti-oestrogen drug used for the treatment of oestrogen receptor (ER)+ patients with breast cancer. Tamoxifen binds to and blocks the ligand-binding pocket of ER.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jozwik, K., Carroll, J. Pioneer factors in hormone-dependent cancers. Nat Rev Cancer 12, 381–385 (2012). https://doi.org/10.1038/nrc3263

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3263

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer