Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gastrointestinal stromal tumours: origin and molecular oncology

Key Points

  • Gastrointestinal stromal tumours (GISTs) are a family of tumours thought to arise from the interstitial cells of Cajal in the gastrointestinal tract. Recently, the putative stem and progenitor cells for GISTs have been identified.

  • Most GISTs have oncogenic mutations in either KIT or platelet-derived growth factor receptor-α (PDGFRA), and targeting these mutant proteins with kinase inhibitors is effective in patients with advanced disease. There is substantial evidence that these mutations are pathogenetic for the initiation of GISTs.

  • GISTs lacking KIT or PDGFRA mutations (known as wild-type GISTs) are a heterogeneous group, of which some have alterations in BRAF, RAS or in the genes of the succinate dehydrogenase complex.

  • Classification of GISTs on the basis of molecular defects is relevant to the clinical management of patients. Notably, the response to kinase inhibitor therapy is influenced by the primary kinase genotype.

  • Secondary mutations in KIT or PDGFRA eventually lead to drug resistance in most patients.

  • A subpopulation of GIST cells with stem cell-like characteristics may be less sensitive to kinase inhibitors, providing the seed for drug resistance.

Abstract

Gastrointestinal stromal tumours (GISTs) are a paradigm for the development of personalized treatment for cancer patients. The nearly simultaneous discovery of a biomarker that is reflective of their origin and the presence of gain-of-function kinase mutations in these tumours set the stage for more accurate diagnosis and the development of kinase inhibitor therapy. Subsequent studies of genotype and phenotype have led to a molecular classification of GIST and to treatment optimization on the basis of molecular subtype. The study of drug-resistant tumours has advanced our understanding of kinase biology, enabling the development of novel kinase inhibitors. Further improvements in GIST treatment may require targeting GIST stem cell populations and/or additional genomic events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KIT and PDGFRA structure and mutations.
Figure 2: Oncogenic signalling in KIT and PDGFRA-mutant GISTs.
Figure 3: Oncogenic signalling in wild-type GISTs.
Figure 4: Secondary mutations in KIT and their drug sensitivities.

Similar content being viewed by others

References

  1. Chan, K. H. et al. Gastrointestinal stromal tumors in a cohort of Chinese patients in Hong Kong. World J. Gastroenterol. 12, 2223–2228 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Goettsch, W. G. et al. Incidence of gastrointestinal stromal tumours is underestimated: Results of a nation-wide study. Eur. J. Cancer 41, 2868–2872 (2005).

    Article  PubMed  Google Scholar 

  3. Nilsson, B. et al. Gastrointestinal stromal tumors: The incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era. Cancer 103, 821–829 (2005).

    Article  PubMed  Google Scholar 

  4. Tryggvason, G., Gislason, H. G., Magnusson, M. K. & Jonasson, J. G. Gastrointestinal stromal tumors in Iceland, 1990–2003: The Icelandic GIST study, a population-based incidence and pathologic risk stratification study. Int. J. Cancer 117, 289–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. DeMatteo, R. P., Heinrich, M. C., el-Rifai, W. & Demetri, G. Clinical management of gastrointestinal stromal tumors: Before and after STI-571. Hum. Pathol. 33, 466–477 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Hirota, S. et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279, 577–580 (1998). This landmark study revealed the importance of KIT expression and the first description of KIT mutations in GISTs.

    Article  CAS  PubMed  Google Scholar 

  7. Kindblom, L. G., Remotti, H. E., Aldenborg, F. & Meis-Kindblom, J. M. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am. J. Pathol. 152, 1259–1269 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hanks, S. K., Quinn, A. M. & Hunter, T. The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains. Science 241, 42–52 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. Huang, E. et al. The hematopoietic growth factor KL is encoded by the Sl locus and is the ligand of the c-kit receptor, the gene product of the W locus. Cell 63, 225–233 (1990).

    Article  CAS  PubMed  Google Scholar 

  10. Mol., C. D. et al. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J. Biol. Chem. 279, 31655–31663 (2004). This paper describes the structural biology of KIT activation and how imatinib inhibits KIT enzymatic activity.

    Article  CAS  PubMed  Google Scholar 

  11. Corless, C. L. et al. KIT gene deletions at the intron 10-exon 11 boundary in GI stromal tumors. J. Mol. Diagn. 6, 366–370 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ernst, S. I. et al. KIT mutation portends poor prognosis in gastrointestinal stromal/smooth muscle tumors. Laboratory Investigation 78, 1633–1636 (1998).

    CAS  PubMed  Google Scholar 

  13. Lasota, J., Jasinski, M., Sarlomo-Rikala, M. & Miettinen, M. Mutations in exon 11 of c-Kit occur preferentially in malignant versus benign gastrointestinal stromal tumors and do not occur in leiomyomas or leiomyosarcomas. Am. J. Pathol. 154, 53–60 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Singer, S. et al. Prognostic Value of KIT Mutation Type, Mitotic Activity, and Histologic Subtype in Gastrointestinal Stromal Tumors. J. Clin. Oncol. 20, 3898–3905 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Taniguchi, M. et al. Effect of c-kit mutation on prognosis of gastrointestinal stromal tumors. Cancer Res. 59, 4297–4300 (1999).

    CAS  PubMed  Google Scholar 

  16. Andersson, J. et al. Gastrointestinal stromal tumors with KIT exon 11 deletions are associated with poor prognosis. Gastroenterology 130, 1573–1581 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Cho, S. et al. Deletion of the KIT gene is associated with liver metastasis and poor prognosis in patients with gastrointestinal stromal tumor in the stomach. Int. J. Oncol. 28, 1361–1367 (2006).

    CAS  PubMed  Google Scholar 

  18. Liu, X. H. et al. Prognostic value of KIT mutation in gastrointestinal stromal tumors. World J. Gastroenterol. 11, 3948–3952 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Martin, J. et al. Deletions affecting codons 557–558 of the c-KIT gene indicate a poor prognosis in patients with completely resected gastrointestinal stromal tumors: a study by the Spanish Group for Sarcoma Research (GEIS). J. Clin. Oncol. 23, 6190–6198 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Tzen, C. Y. & Mau, B. L. Analysis of CD117-negative gastrointestinal stromal tumors. World J. Gastroenterol. 11, 1052–1055 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wardelmann, E. et al. Deletion of Trp-557 and Lys-558 in the juxtamembrane domain of the c-kit protooncogene is associated with metastatic behavior of gastrointestinal stromal tumors. Int. J. Cancer 106, 887–895 (2003). This was the first study to associate deletions involving codon 557 and codon 558 with a more aggressive clinical course.

    Article  CAS  PubMed  Google Scholar 

  22. Lux, M. L. et al. KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors. Am. J. Pathol. 156, 791–795 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yuzawa, S. et al. Structural basis for activation of the receptor tyrosine kinase KIT by stem cell factor. Cell 130, 323–334 (2007). This structural biology study reveals how SCF binding activates KIT and provides insights into the mechanism by which certain extracellular domain mutations associated with GISTs result in KIT activation.

    Article  CAS  PubMed  Google Scholar 

  24. Antonescu, C. R. et al. Gene expression in gastrointestinal stromal tumors is distinguished by KIT genotype and anatomic site. Clin. Cancer Res. 10, 3282–3290 (2004). This is an elegant analysis of gene expression in GISTs, based on tumour genotype and location.

    Article  CAS  PubMed  Google Scholar 

  25. Lasota, J. et al. Clinicopathologic profile of gastrointestinal stromal tumors (GISTs) with primary KIT exon 13 or exon 17 mutations: a multicenter study on 54 cases. Mod. Pathol. 21, 476–484 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Rubin, B. P. et al. KIT Activation Is a Ubiquitous Feature of Gastrointestinal Stromal Tumors. Cancer Res. 61, 8118–8121 (2001).

    CAS  PubMed  Google Scholar 

  27. Heinrich, M. C. et al. Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96, 925–932 (2000). This was the first description of the activity of imatinib (formerly known as STI-571) to inhibit KIT exon 11 mutations that are commonly found in GISTs.

    CAS  PubMed  Google Scholar 

  28. Tuveson, D. A. et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene 20, 5054–5058 (2001). This was the first description of a GIST cell line and the ability of imatinib-induced KIT inhibition to inhibit GIST cell proliferation and survival.

    Article  CAS  PubMed  Google Scholar 

  29. Sommer, G. et al. Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase. Proc. Natl Acad. Sci. USA 100, 6706–6711 (2003). This was the first description of a murine model of GISTs generated by germline encoding of a mutated KIT protein (KIT exon 11 model).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rubin, B. P. et al. A knock-in mouse model of gastrointestinal stromal tumor harboring kit K641E. Cancer Res. 65, 6631–6639 (2005). This paper describes another murine model of GISTs generated by knock in of a gene coding for a mutated KIT exon 13 protein.

    Article  CAS  PubMed  Google Scholar 

  31. Chen, H. et al. Polyclonal nature of diffuse proliferation of interstitial cells of Cajal in patients with familial and multiple gastrointestinal stromal tumours. Gut 51, 793–796 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. O'riain, C. et al. Gastrointestinal Stromal Tumors: Insights From a New Familial GIST Kindred With Unusual Genetic and Pathologic Features. Am. J. Surg. Pathol. 29, 1680–1683 (2005).

    Article  PubMed  Google Scholar 

  33. Duensing, A. et al. Mechanisms of oncogenic KIT signal transduction in primary gastrointestinal stromal tumors (GISTs). Oncogene 23, 3999–4006 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Rossi, F. et al. Oncogenic Kit signaling and therapeutic intervention in a mouse model of gastrointestinal stromal tumor. Proc. Natl Acad. Sci. USA 103, 12843–12848 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Duensing, A. et al. Protein Kinase C theta (PKCtheta) expression and constitutive activation in gastrointestinal stromal tumors (GISTs). Cancer Res. 64, 5127–5131 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Chi, P. et al. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature 467, 849–853 (2010). This study brought to light the important role of ETV1 in ICC and GIST biology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dissanayake, K. et al. ERK/p90(RSK)/14-3-3 signalling has an impact on expression of PEA3 Ets transcription factors via the transcriptional repressor capicua. Biochem. J. 433, 515–525 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Bauer, S., Duensing, A., Demetri, G. D. & Fletcher, J. A. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene 26, 7560–7568 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Bauer, S., Yu, L. K., Demetri, G. D. & Fletcher, J. A. Heat shock protein 90 inhibition in imatinib-resistant gastrointestinal stromal tumor. Cancer Res. 66, 9153–9161 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Fumo, G., Akin, C., Metcalfe, D. D. & Neckers, L. 17-Allylamino-17-demethoxygeldanamycin (17-AAG) is effective in down-regulating mutated, constitutively activated KIT protein in human mast cells. Blood 103, 1078–1084 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Pauls, K., Merkelbach-Bruse, S., Thal, D., Buttner, R. & Wardelmann, E. PDGFRalpha- and c-kit-mutated gastrointestinal stromal tumours (GISTs) are characterized by distinctive histological and immunohistochemical features. Histopathology 46, 166–175 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Xiang, Z., Kreisel, F., Cain, J., Colson, A. & Tomasson, M. H. Neoplasia driven by mutant c-KIT is mediated by intracellular, not plasma membrane, receptor signaling. Mol. Cell Biol. 27, 267–282 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Heinrich, M. C. et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol. 21, 4342–4349 (2003). This study established the link between GIST genotype and imatinib response in advanced GISTs.

    Article  CAS  PubMed  Google Scholar 

  44. Antonescu, C. R. et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin. Cancer Res. 11, 4182–4190 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Chen, L. L. et al. Evolution from heterozygous to homozygous KIT mutation in gastrointestinal stromal tumor correlates with the mechanism of mitotic nondisjunction and significant tumor progression. Mod. Pathol. 21, 826–836 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Heinrich, M. C. et al. PDGFRA Activating Mutations in Gastrointestinal Stromal Tumors. Science 299, 708–710 (2003). This study identified PGFRA mutations in a subset of GISTs lacking KIT mutations.

    Article  CAS  PubMed  Google Scholar 

  47. Hirota, S. et al. Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology 125, 660–667 (2003). This was another important study in establishing the role of PDGFRA mutations in some GISTs.

    Article  CAS  PubMed  Google Scholar 

  48. Wasag, B. et al. Differential expression of KIT/PDGFRA mutant isoforms in epithelioid and mixed variants of gastrointestinal stromal tumors depends predominantly on the tumor site. Mod. Pathol. 17, 889–894 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Kang, H. J. et al. Correlation of KIT and platelet-derived growth factor receptor alpha mutations with gene activation and expression profiles in gastrointestinal stromal tumors. Oncogene 24, 1066–1074 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Matei, D. et al. The platelet-derived growth factor receptor alpha is destabilized by geldanamycins in cancer cells. J. Biol. Chem. 282, 445–453 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Debiec-Rychter, M. et al. Gastrointestinal stromal tumours (GISTs) negative for KIT (CD117 antigen) immunoreactivity. J. Pathol. 202, 430–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. West, R. B. et al. The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am. J. Pathol. 165, 107–113 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wozniak, A. et al. Array CGH analysis in primary gastrointestinal stromal tumors: cytogenetic profile correlates with anatomic site and tumor aggressiveness, irrespective of mutational status. Genes Chromosom. Cancer 46, 261–276 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Subramanian, S. et al. Gastrointestinal stromal tumors (GISTs) with KIT and PDGFRA mutations have distinct gene expression profiles. Oncogene 23, 7780–7790 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Medeiros, F. et al. KIT-negative gastrointestinal stromal tumors: proof of concept and therapeutic implications. Am. J. Surg. Pathol. 28, 889–894 (2004).

    Article  PubMed  Google Scholar 

  56. Sakurai, S. et al. Myxoid epithelioid gastrointestinal stromal tumor (GIST) with mast cell infiltrations: a subtype of GIST with mutations of platelet-derived growth factor receptor alpha gene. Hum. Pathol. 35, 1223–1230 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Wardelmann, E. et al. Association of platelet-derived growth factor receptor alpha mutations with gastric primary site and epithelioid or mixed cell morphology in gastrointestinal stromal tumors. J. Mol. Diagn. 6, 197–204 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lasota, J., Dansonka-Mieszkowska, A., Sobin, L. H. & Miettinen, M. A great majority of GISTs with PDGFRA mutations represent gastric tumors of low or no malignant potential. Lab. Invest. 84, 874–883 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Lasota, J., Stachura, J. & Miettinen, M. GISTs with PDGFRA exon 14 mutations represent subset of clinically favorable gastric tumors with epithelioid morphology. Lab. Invest. 86, 94–100 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Hostein, I. et al. BRAF mutation status in gastrointestinal stromal tumors. Am. J. Clin. Pathol. 133, 141–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Janeway, K. A. et al. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc. Natl Acad. Sci. USA 108, 314–318 (2011). This study established a role for SDH gene mutations in a subset of GISTs lacking a kinase gene mutation.

    Article  CAS  PubMed  Google Scholar 

  62. Pantaleo, M. A. et al. SDHA Loss-of-Function Mutations in KIT-PDGFRA Wild-Type Gastrointestinal Stromal Tumors Identified by Massively Parallel Sequencing. J. Natl. Cancer Inst. 103, 983–987 (2011). Recent report of somatic SDHA mutations in a subset of wild-type GISTs.

    Article  CAS  PubMed  Google Scholar 

  63. Linehan, W. M., Srinivasan, R. & Schmidt, L. S. The genetic basis of kidney cancer: a metabolic disease. Nature Rev. Urol. 7, 277–285 (2010).

    Article  CAS  Google Scholar 

  64. Ricketts, C. et al. Germline SDHB mutations and familial renal cell carcinoma. J. Natl. Cancer Inst. 100, 1260–1262 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Corless, C. L., Beadling, C., Justusson, E. & Heinrich, M. C. Evaluation of the presence of IGF1R overexpression in wild-type and kinase mutant GI stromal tumors. J. Clin. Oncol. 27, 15s (2009).

    Article  Google Scholar 

  66. Andersson, J. et al. NF1-associated gastrointestinal stromal tumors have unique clinical, phenotypic, and genotypic characteristics. Am. J. Surg. Pathol. 29, 1170–1176 (2005).

    Article  PubMed  Google Scholar 

  67. Kang, D. Y. et al. Multiple Gastrointestinal Stromal Tumors: Clinicopathologic and Genetic Analysis of 12 Patients. Am. J. Surg. Pathol. 31, 224–232 (2007).

    Article  PubMed  Google Scholar 

  68. Maertens, O. et al. Molecular pathogenesis of multiple gastrointestinal stromal tumors in NF1 patients. Hum. Mol. Genet. 15, 1015–1023 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Miettinen, M., Fetsch, J. F., Sobin, L. H. & Lasota, J. Gastrointestinal Stromal Tumors in Patients With Neurofibromatosis 1: A Clinicopathologic and Molecular Genetic Study of 45 Cases. Am. J. Surg. Pathol. 30, 90–96 (2006).

    Article  PubMed  Google Scholar 

  70. Stewart, C. et al. Mitotic recombination as evidence of alternative pathogenesis of gastrointestinal stromal tumours in neurofibromatosis type 1. J. Med. Genet. 44, e61 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kinoshita, K. et al. Absence of c-kit gene mutations in gastrointestinal stromal tumours from neurofibromatosis type 1 patients. J. Pathol. 202, 80–85 (2004).

    Article  CAS  PubMed  Google Scholar 

  72. Prakash, S. et al. Gastrointestinal stromal tumors in children and young adults: a clinicopathologic, molecular, and genomic study of 15 cases and review of the literature. J. Pediatr. Hematol. Oncol. 27, 179–187 (2005).

    Article  PubMed  Google Scholar 

  73. Janeway, K. A. et al. Pediatric KIT wild-type and platelet-derived growth factor receptor alpha-wild-type gastrointestinal stromal tumors share KIT activation but not mechanisms of genetic progression with adult gastrointestinal stromal tumors. Cancer Res. 67, 9084–9088 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Agaram, N. P. et al. Molecular characterization of pediatric gastrointestinal stromal tumors. Clin. Cancer Res. 14, 3204–3215 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Carney, J. A. Gastric stromal sarcoma, pulmonary chondroma, and extra-adrenal paraganglioma (Carney Triad): natural history, adrenocortical component, and possible familial occurrence. Mayo Clin. Proc. 74, 543–552 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Bergmann, F. et al. Cytogenetic and morphologic characteristics of gastrointestinal stromal tumors. Recurrent rearrangement of chromosome 1 and losses of chromosomes 14 and 22 as common anomalies. Verh. Dtsch. Ges. Pathol. 82, 275–278 (1998).

    CAS  PubMed  Google Scholar 

  77. Debiec-Rychter, M., Lasota, J., Sarlomo-Rikala, M., Kordek, R. & Miettinen, M. Chromosomal aberrations in malignant gastrointestinal stromal tumors: correlation with c-KIT gene mutation. Cancer Genet. Cytogenet. 128, 24–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Fukasawa, T. et al. Allelic loss of 14q and 22q, NF2 mutation, and genetic instability occur independently of c-kit mutation in gastrointestinal stromal tumor. Jpn. J. Cancer Res. 91, 1241–1249 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Heinrich, M. C., Rubin, B. P., Longley, B. J. & Fletcher, J. A. Biology and genetic aspects of gastrointestinal stromal tumors: KIT activation and cytogenetic alterations. Hum. Pathol. 33, 484–495 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Kim, N. G. et al. Putative chromosomal deletions on 9P, 9Q and 22Q occur preferentially in malignant gastrointestinal stromal tumors. Int. J. Cancer 85, 633–638 (2000).

    Article  CAS  PubMed  Google Scholar 

  81. el-Rifai, W., Sarlomo-Rikala, M., Andersson, L. C., Miettinen, M. & Knuutila, S. High-resolution deletion mapping of chromosome 14 in stromal tumors of the gastrointestinal tract suggests two distinct tumor suppressor loci. Genes Chromosom. Cancer 27, 387–391 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Assamaki, R. et al. Array comparative genomic hybridization analysis of chromosomal imbalances and their target genes in gastrointestinal stromal tumors. Genes Chromosom. Cancer 46, 564–576 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Gunawan, B. et al. An oncogenetic tree model in gastrointestinal stromal tumours (GISTs) identifies different pathways of cytogenetic evolution with prognostic implications. J. Pathol. 211, 463–470 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. El Rifai, W., Sarlomo-Rikala, M., Miettinen, M., Knuutila, S. & Andersson, L. C. DNA copy number losses in chromosome 14: an early change in gastrointestinal stromal tumors. Cancer Res. 56, 3230–3233 (1996).

    CAS  PubMed  Google Scholar 

  85. O'Leary, T., Ernst, S., Przygodzki, R., Emory, T. & Sobin, L. Loss of heterozygosity at 1p36 predicts poor prognosis in gastrointestinal stromal/smooth muscle tumors. Laboratory Investigation 79, 1461–1467 (1999).

    CAS  PubMed  Google Scholar 

  86. Schurr, P. et al. Microsatellite DNA alterations of gastrointestinal stromal tumors are predictive for outcome. Clin. Cancer Res. 12, 5151–5157 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Ylipaa, A. et al. Integrative genomic characterization and a genomic staging system for gastrointestinal stromal tumors. Cancer 117, 380–389 (2011). Recent report of a prognostic classification schema for GISTs based on genomic abnormalities.

    Article  CAS  PubMed  Google Scholar 

  88. el-Rifai, W., Sarlomo-Rikala, M., Andersson, L. C., Knuutila, S. & Miettinen, M. DNA sequence copy number changes in gastrointestinal stromal tumors: tumor progression and prognostic significance. Cancer Res. 60, 3899–3903 (2000).

    CAS  PubMed  Google Scholar 

  89. Chibon, F. et al. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nature Med. 16, 781–787 (2010).

    Article  CAS  PubMed  Google Scholar 

  90. Yamamoto, H. et al. Neurofibromatosis type 1-related gastrointestinal stromal tumors: a special reference to loss of heterozygosity at 14q and 22q. J. Cancer Res. Clin. Oncol. 135, 791–798 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Hur, K., Lee, H. J., Woo, J. H., Kim, J. H. & Yang, H. K. Gene expression profiling of human gastrointestinal stromal tumors according to its malignant potential. Dig. Dis. Sci. 55, 2561–2567 (2010).

    Article  CAS  PubMed  Google Scholar 

  92. Schneider-Stock, R. et al. High Prognostic Value of p16INK4 Alterations in Gastrointestinal Stromal Tumors. J. Clin. Oncol. 21, 1688–1697 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Perrone, F. et al. 9p21 locus analysis in high-risk gastrointestinal stromal tumors characterized for c-kit and platelet-derived growth factor receptor alpha gene alterations. Cancer 104, 159–169 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Ricci, R. et al. Role of p16/INK4a in gastrointestinal stromal tumor progression. Am. J. Clin. Pathol. 122, 35–43 (2004).

    Article  CAS  PubMed  Google Scholar 

  95. Sabah, M., Cummins, R., Leader, M. & Kay, E. Loss of heterozygosity of chromosome 9p and loss of p16INK4A expression are associated with malignant gastrointestinal stromal tumors. Mod. Pathol. 17, 1364–1371 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Schneider-Stock, R. et al. Loss of p16 protein defines high-risk patients with gastrointestinal stromal tumors: a tissue microarray study. Clin. Cancer Res. 11, 638–645 (2005).

    CAS  PubMed  Google Scholar 

  97. Huang, H. Y. et al. Homozygous deletion of MTAP gene as a poor prognosticator in gastrointestinal stromal tumors. Clin. Cancer Res. 15, 6963–6972 (2009).

    Article  CAS  PubMed  Google Scholar 

  98. Nakamura, N. et al. Prognostic significance of expressions of cell-cycle regulatory proteins in gastrointestinal stromal tumor and the relevance of the risk grade. Hum. Pathol. 36, 828–837 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Pruneri, G. et al. Cyclin D3 immunoreactivity in gastrointestinal stromal tumors is independent of cyclin D3 gene amplification and is associated with nuclear p27 accumulation. Mod. Pathol. 16, 886–892 (2003).

    Article  PubMed  Google Scholar 

  100. Dorn, J. et al. Cyclin H expression is increased in GIST with very-high risk of malignancy. BMC. Cancer 10, 350 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Feakins, R. M. The expression of p53 and bcl-2 in gastrointestinal stromal tumours is associated with anatomical site, and p53 expression is associated with grade and clinical outcome. Histopathology 46, 270–279 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Panizo-Santos, A. et al. Predicting Metastatic Risk of Gastrointestinal Stromal Tumors: Role of Cell Proliferation and Cell Cycle Regulatory Proteins. Int. J. Surg. Pathol. 8, 133–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Romeo, S. et al. Cell cycle/apoptosis molecule expression correlates with imatinib response in patients with advanced gastrointestinal stromal tumors. Clin. Cancer Res. 15, 4191–4198 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Tornillo, L. et al. Patterns of gene amplification in gastrointestinal stromal tumors (GIST). Lab. Invest. 85, 921–931 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Koelz, M. et al. Down-regulation of miR-221 and miR-222 correlates with pronounced Kit expression in gastrointestinal stromal tumors. Int. J. Oncol. 38, 503–511 (2011).

    Article  CAS  PubMed  Google Scholar 

  106. Bardsley, M. R. et al. Kit(low) Stem Cells Cause Resistance to Kit/Platelet-Derived Growth Factor alpha Inhibitors in Murine Gastrointestinal Stromal Tumors. Gastroenterology 139, 942–952 (2010). This report describes the identification of putative GIST stem cell and progenitor cell populations and the insensitivity of these cells to imatinib.

    Article  CAS  PubMed  Google Scholar 

  107. Beghini, A. et al. Germline mutation in the juxtamembrane domain of the kit gene in a family with gastrointestinal stromal tumors and urticaria pigmentosa. Cancer 92, 657–662 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Chompret, A. et al. PDGFRA germline mutation in a family with multiple cases of gastrointestinal stromal tumor. Gastroenterology 126, 318–321 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Hirota, S. et al. Familial gastrointestinal stromal tumors associated with dysphagia and novel type germline mutation of KIT gene. Gastroenterology 122, 1493–1499 (2002).

    Article  PubMed  Google Scholar 

  110. Isozaki, K. et al. Germline-activating mutation in the kinase domain of KIT gene in familial gastrointestinal stromal tumors. Am. J. Pathol. 157, 1581–1585 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Maeyama, H. et al. Familial Gastrointestinal Stromal Tumor With Hyperpigmentation: Association With a Germline Mutation of the c-kit Gene. Gastroenterology 120, 210–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  112. Nishida, T. et al. Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nature Genetics 19, 323–324 (1998). Published just shortly after the discovery of KIT mutations in GISTs, this report identified a germline KIT mutation as the cause of familal GISTs.

    Article  CAS  PubMed  Google Scholar 

  113. Novelli, M. et al. DOG1 and CD117 are the antibodies of choice in the diagnosis of gastrointestinal stromal tumours. Histopathology 57, 259–270 (2010).

    Article  PubMed  Google Scholar 

  114. Sarlomo-Rikala, M., Tsujimura, T., Lendahl, U. & Miettinen, M. Patterns of nestin and other intermediate filament expression distinguish between gastrointestinal stromal tumors, leiomyomas and schwannomas. APMIS 110, 499–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  115. Motegi, A. et al. PKC theta, a novel immunohistochemical marker for gastrointestinal stromal tumors (GIST), especially useful for identifying KIT-negative tumors. Pathol. Int. 55, 106–112 (2005).

    Article  CAS  PubMed  Google Scholar 

  116. Wong, N. A. & Shelley-Fraser, G. Specificity of DOG1 (K9 clone) and protein kinase C theta (clone 27) as immunohistochemical markers of gastrointestinal stromal tumour. Histopathology 57, 250–258 (2010).

    Article  PubMed  Google Scholar 

  117. Poole, D. P., Van Nguyen, T., Kawai, M. & Furness, J. B. Protein kinases expressed by interstitial cells of Cajal. Histochem. Cell Biol. 121, 21–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Southwell, B. R. Localization of protein kinase C theta immunoreactivity to interstitial cells of Cajal in guinea-pig gastrointestinal tract. Neurogastroenterol. Motil. 15, 139–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Gomez-Pinilla, P. J. et al. Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G1370–G1381 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Antonescu, C. R. et al. Association of KIT exon 9 mutations with nongastric primary site and aggressive behavior: KIT mutation analysis and clinical correlates of 120 gastrointestinal stromal tumors. Clin. Cancer Res. 9, 3329–3337 (2003).

    CAS  PubMed  Google Scholar 

  121. Lasota, J. et al. KIT 1530ins6 mutation defines a subset of predominantly malignant gastrointestinal stromal tumors of intestinal origin. Hum. Pathol. 34, 1306–1312 (2003).

    Article  CAS  PubMed  Google Scholar 

  122. Agaimy, A. et al. Minute gastric sclerosing stromal tumors (GIST tumorlets) are common in adults and frequently show c-KIT mutations. Am. J. Surg. Pathol. 31, 113–120 (2007). This is a good descriptive study of micro-GISTs, including clinical, pathological and molecular annotation.

    Article  PubMed  Google Scholar 

  123. Corless, C. L., McGreevey, L., Haley, A., Town, A. & Heinrich, M. C. KIT mutations are common in incidental gastrointestinal stromal tumors one centimeter or less in size. Am. J. Pathol. 160, 1567–1572 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kawanowa, K. et al. High incidence of microscopic gastrointestinal stromal tumors in the stomach. Hum. Pathol. 37, 1527–1535 (2006).

    Article  PubMed  Google Scholar 

  125. Muenst, S. et al. Frequency, phenotype, and genotype of minute gastrointestinal stromal tumors in the stomach: an autopsy study. Hum. Pathol. (2011).

  126. Rossi, S. et al. Molecular and clinicopathologic characterization of gastrointestinal stromal tumors (GISTs) of small size. Am. J. Surg. Pathol. 34, 1480–1491 (2010).

    Article  PubMed  Google Scholar 

  127. Agaimy, A. et al. Microscopic gastrointestinal stromal tumors in esophageal and intestinal surgical resection specimens: a clinicopathologic, immunohistochemical, and molecular study of 19 lesions. Am. J. Surg. Pathol. 32, 867–873 (2008).

    Article  PubMed  Google Scholar 

  128. Gasparotto, D. et al. Multiple primary sporadic gastrointestinal stromal tumors in the adult: an underestimated entity. Clin. Cancer Res. 14, 5715–5721 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Druker, B. J. et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nature Med. 2, 561–566 (1996). This was the first description of the ability of imatinib to inhibit BCR–ABL kinase activity. This study provided the preclinical rationale for clinical testing of imatinib for treatment of CML.

    Article  CAS  PubMed  Google Scholar 

  130. Gajiwala, K. S. et al. KIT kinase mutants show unique mechanisms of drug resistance to imatinib and sunitinib in gastrointestinal stromal tumor patients. Proc. Natl Acad. Sci. USA 106, 1542–1547 (2009). This paper provides a mechanistic explanation for how imatinib and sunitinib inhibit KIT enzyme activity and why different mutations produce drug sensitivity or resistance.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Mol., C. D. et al. Structure of a c-kit product complex reveals the basis for kinase transactivation. J. Biol. Chem. 278, 31461–31464 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Joensuu, H. et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gastrointestinal stromal tumor. N. Engl. J. Med. 1052, 1052–1056 (2001). This is a case report of the first patient with GISTs successfully treated with imatinib.

    Article  Google Scholar 

  133. Van Oosterom, A. T. et al. STI571, an active drug in metastatic gastrointestinal stromal tumors (GIST) an EORTC phase I study. Proc. Am. Soc. Clin. Oncol. 20, 1a. 2001.

    Google Scholar 

  134. Demetri, G. D. et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N. Engl. J. Med. 347, 472–480 (2002). The results of this study lead to FDA approval of imatinib for treatment of advanced GISTs.

    Article  CAS  PubMed  Google Scholar 

  135. Blanke, C. D. et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J. Clin. Oncol. 26, 626–632 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Verweij, J. et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet 364, 1127–1134 (2004).

    Article  CAS  PubMed  Google Scholar 

  137. Gastrointestinal Stromal Tumor Meta-Analysis Group (MetaGIST). Comparison of two doses of imatinib for the treatment of unresectable or metastatic gastrointestinal stromal tumors: a meta-analysis of 1, 640 patients. J. Clin. Oncol. 28, 1247–1253 (2010).

  138. von Mehren, M. et al. Follow-up results after 9 years (yrs) of the ongoing, phase II B2222 trial of imatinib mesylate (IM) in patients (pts) with metastatic or unresectable KIT+ gastrointestinal stromal tumors (GIST). J. Clin. Oncol. Abstr. 29, 2011. 2011.

  139. DeMatteo, R. P. et al. Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 373, 1097–1104 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Le, Cesne.A. et al. Discontinuation of imatinib in patients with advanced gastrointestinal stromal tumours after 3 years of treatment: an open-label multicentre randomised phase 3 trial. Lancet Oncol. 11, 942–949 (2010).

    Article  CAS  Google Scholar 

  141. Gupta, A. et al. Autophagy inhibition and antimalarials promote cell death in gastrointestinal stromal tumor (GIST). Proc. Natl Acad. Sci. USA 107, 14333–14338 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Agaram, N. P. et al. Pathologic and molecular heterogeneity in imatinib-stable or imatinib-responsive gastrointestinal stromal tumors. Clin. Cancer Res. 13, 170–181 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Van den Abbeele, A. D. & Badawi, R. D. Use of positron emission tomography in oncology and its potential role to assess response to imatinib mesylate therapy in gastrointestinal stromal tumors (GISTs). Eur. J. Cancer 38, S60–S65 (2002).

    Article  PubMed  Google Scholar 

  144. Choi, H. et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J. Clin. Oncol. 25, 1753–1759 (2007).

    Article  PubMed  Google Scholar 

  145. Abhyankar, S. A. & Nair, N. Highlighting the Role of FDG PET Scan in Early Response Assessment of Gastrointestinal Stromal Tumor Treated With Imatinib Mesylate. Clin. Nucl. Med. 33, 213–214 (2008).

    Article  PubMed  Google Scholar 

  146. Heinrich, M. C. et al. Correlation of kinase genotype and clinical outcome in the North American Intergroup Phase III Trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group. J. Clin. Oncol. 26, 5360–5367 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Blanke, C. D. et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J. Clin. Oncol. 26, 620–625 (2008).

    Article  CAS  PubMed  Google Scholar 

  148. Liu, Y. et al. Histone H2AX is a mediator of gastrointestinal stromal tumor cell apoptosis following treatment with imatinib mesylate. Cancer Res. 67, 2685–2692 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Weinstein, I. B. Cancer. Addiction to oncogenes-the Achilles heal of cancer. Science 297, 63–64 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Reynoso, D. et al. Synergistic induction of apoptosis by the Bcl-2 inhibitor ABT-737 and imatinib mesylate in gastrointestinal stromal tumor cells. Mol. Oncol. 5, 93–104 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Gordon, P. M. & Fisher, D. E. Role for the proapoptotic factor BIM in mediating imatinib-induced apoptosis in a c-KIT-dependent gastrointestinal stromal tumor cell line. J. Biol. Chem. 285, 14109–14114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Debiec-Rychter, M. et al. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur. J. Cancer 42, 1093–1103 (2006).

    Article  CAS  PubMed  Google Scholar 

  153. Heinrich, M. C. et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J. Clin. Oncol. 26, 5352–5359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Corless, C. L. et al. PDGFRA Mutations In Gastrointestinal Stromal Tumors: Frequency, Spectrum and In Vitro Sensitivity To Imatinib. J. Clin. Oncol. 23, 5357–5364 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Weisberg, E. et al. Effects of PKC412, nilotinib, and imatinib against GIST-associated PDGFRA mutants with differential imatinib sensitivity. Gastroenterology 131, 1734–1742 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Biron, P. et al. Outcome of patients (pts) with PDGFRA D842V mutant gastrointestinal stromal tumor (GIST) treated with imatinib (IM) for advanced disease. J. Clin. Oncol. 28, 15s. 2010.

    Article  Google Scholar 

  157. Agaimy, A. et al. V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wild-type gastrointestinal stromal tumours. J. Clin. Pathol. 62, 613–616 (2009).

    Article  CAS  PubMed  Google Scholar 

  158. Agaram, N. P. et al. Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosom. Cancer 47, 853–859 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Janeway, K. A. et al. Sunitinib treatment in pediatric patients with advanced GIST following failure of imatinib. Pediatr. Blood Cancer 52, 767–771 (2009).

    Article  PubMed  Google Scholar 

  160. Chen, L. L. et al. A missense mutation in KIT kinase domain 1 correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res. 64, 5913–5919 (2004). This was the first description of acquired KIT mutations in imatinib-resistant GISTs.

    Article  CAS  PubMed  Google Scholar 

  161. Debiec-Rychter, M., Van Oosterom, A. T. & Marynen, P. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology 128, 270–279 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Grimpen, F. et al. Resistance to imatinib, low-grade FDG-avidity on PET, and acquired KIT exon 17 mutation in gastrointestinal stromal tumour. Lancet Oncol. 6, 724–727 (2005).

    Article  CAS  PubMed  Google Scholar 

  163. Heinrich, M. C. et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J. Clin. Oncol. 24, 4764–4774 (2006).

    Article  CAS  Google Scholar 

  164. Koyama, T. et al. Recurrent gastrointestinal stromal tumor (GIST) of the stomach associated with a novel c-kit mutation after imatinib treatment. Gastric Cancer 9, 235–239 (2006).

    Article  PubMed  Google Scholar 

  165. Wakai, T. et al. Late resistance to imatinib therapy in a metastatic gastrointestinal stromal tumour is associated with a second KIT mutation. Br. J. Cancer 90, 2059–2061 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Wardelmann, E. et al. Acquired resistance to imatinib in gastrointestinal stromal tumours caused by multiple KIT mutations. Lancet Oncol. 6, 249–251 (2005). This report highlights the intra- and inter-lesional heterogeneity of secondary mutations in drug-resistant GISTs.

    Article  CAS  PubMed  Google Scholar 

  167. Tamborini, E. et al. A new mutation in the KIT ATP pocket causes acquired resistance to imatinib in a gastrointestinal stromal tumor patient. Gastroenterology 127, 294–299 (2004).

    Article  CAS  PubMed  Google Scholar 

  168. Wardelmann, E. et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin. Cancer Res. 12, 1743–1749 (2006).

    Article  CAS  PubMed  Google Scholar 

  169. Liegl, B. et al. Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J. Pathol. 216, 64–74 (2008). This report highlights the intra- and inter-lesional heterogeneity of secondary mutations in drug-resistant GISTs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lim, K. H. et al. Molecular analysis of secondary kinase mutations in imatinib-resistant gastrointestinal stromal tumors. Med. Oncol. 25, 207–213 (2008).

    Article  CAS  PubMed  Google Scholar 

  171. Nishida, T. et al. Secondary mutations in the kinase domain of the KIT gene are predominant in imatinib-resistant gastrointestinal stromal tumor. Cancer Sci. 99, 799–804 (2008).

    Article  CAS  PubMed  Google Scholar 

  172. Fletcher, J. et al. Polyclonal resistance to kinase inhibition in GIST: Mechanisms and therapeutic strategies. Proceedings of the 2nd EORTC-NCI-AACR symposium on “Molecular Targ. 2010.

  173. Loughrey, M. B. et al. Polyclonal resistance in gastrointestinal stromal tumor treated with sequential kinase inhibitors. Clin. Cancer Res. 12, 6205–6206 (2006).

    Article  CAS  PubMed  Google Scholar 

  174. Ou, W. B., Fletcher, C. D. M., Demetri, G. D. & Fletcher, J. A. Protein kinase C theta (PKCθ) and c-Jun regulate proliferation through cyclin D1 in KIT-independent gastrointestinal stromal tumors. Proceedings of AACR. 2011.

  175. Tarn, C. et al. Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors. Proc. Natl Acad. Sci. USA 105, 8387–8392 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sakurama, K. et al. Inhibition of focal adhesion kinase as a potential therapeutic strategy for imatinib-resistant gastrointestinal stromal tumor. Mol. Cancer Ther. 8, 127–134 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Mahadevan, D. et al. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene 26, 3909–3919 (2007).

    Article  CAS  PubMed  Google Scholar 

  178. Demetri, G. D. Differential properties of current tyrosine kinase inhibitors in gastrointestinal stromal tumors. Semin. Oncol. 38 Suppl 1, S10–S19 (2011).

    Article  CAS  PubMed  Google Scholar 

  179. Demetri, G. D. et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial. Lancet 368, 1329–1338 (2006). This clinical report of the activity of sunitinib for treatment of imatinib-resistant GISTs led to drug approval of sunitinib for this indication.

    Article  CAS  PubMed  Google Scholar 

  180. Nishida, T. et al. Sunitinib-resistant gastrointestinal stromal tumors harbor cis-mutations in the activation loop of the KIT gene. Int. J. Clin. Oncol. 14, 143–149 (2009).

    Article  CAS  PubMed  Google Scholar 

  181. Sawaki, A. et al. Phase 2 study of nilotinib as third-line therapy for patients with gastrointestinal stromal tumor. Cancer (011).

  182. Reichardt, P. et al. Phase III trial of nilotinib in patients with advanced gastrointestinal stromal tumor (GIST): First results from ENEST g3. J. Clin. Oncol. 28, 15s. 2010.

    Article  Google Scholar 

  183. George, S. et al. A multicenter phase II study of regorafenib in patients (pts) with advanced gastrointestinal stromal tumor (GIST), after therapy with imatinib (IM) and sunitinib (SU). J. Clin. Oncol. 29, 2011. 2011.

  184. Eide, C. A. et al. The ABL Switch Control Inhibitor DCC-2036 Is Active against the Chronic Myeloid Leukemia Mutant BCR-ABLT315I and Exhibits a Narrow Resistance Profile. Cancer Res. 71, 3189–3195 (2011). This was the first description of a novel class of kinase inhibitors that bind outside the ATP pocket.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Heinrich, M. C. et al. In vitro activity of novel KIT/PDGFRA switch pocket kinase inhibitors against mutations associated with drug-resistant GI stromal tumors. J. Clin. Oncol. 28, 15s. 2010.

    Article  Google Scholar 

  186. Reichardt, P. et al. A phase I/II trial of the oral PKC-inhibitor PKC412 (PKC) in combination with imatinib mesylate (IM) in patients (pts) with gastrointestinal stromal tumor (GIST) refractory to IM. 2005 ASCO Annual Meeting Proceedings 23[16s], 196s. 2005.

  187. Schoffski, P. et al. A phase I-II study of everolimus (RAD001) in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors. Ann. Oncol. 21, 1990–1998 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Miettinen, M. et al. Gastrointestinal stromal tumors, intramural leiomyomas, and leiomyosarcomas in the duodenum: a clinicopathologic, immunohistochemical, and molecular genetic study of 167 cases. Am. J. Surg. Pathol. 27, 625–641 (2003).

    Article  PubMed  Google Scholar 

  189. Miettinen, M., Sobin, L. H. & Lasota, J. Gastrointestinal Stromal Tumors of the Stomach: A Clinicopathologic, Immunohistochemical, and Molecular Genetic Study of 1765 Cases With Long-term Follow-up. Am. J. Surg. Pathol. 29, 52–68 (2005).

    Article  PubMed  Google Scholar 

  190. Miettinen, M., Makhlouf, H., Sobin, L. H. & Lasota, J. Gastrointestinal Stromal Tumors of the Jejunum and Ileum: A Clinicopathologic, Immunohistochemical, and Molecular Genetic Study of 906 Cases Before Imatinib With Long-term Follow-up. Am. J. Surg. Pathol. 30, 477–489 (2006).

    Article  PubMed  Google Scholar 

  191. Komuro, T. Structure and organization of interstitial cells of Cajal in the gastrointestinal tract. J. Physiol. 576, 653–658 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Guo, T. et al. Sorafenib inhibits the imatinib-resistant KITT670I gatekeeper mutation in gastrointestinal stromal tumor. Clin. Cancer Res. 13, 4874–4881 (2007).

    Article  CAS  PubMed  Google Scholar 

  193. Cullinane, C. et al. Preclinical evaluation of nilotinib efficacy in an imatinib-resistant KIT-driven tumor model. Mol. Cancer Ther. 9, 1461–1468 (2010).

    Article  CAS  PubMed  Google Scholar 

  194. Roberts, K. G. et al. Resistance to c-KIT kinase inhibitors conferred by V654A mutation. Mol. Cancer Ther. 6, 1159–1166 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge all of the members of their laboratories for their continuing efforts on gastrointestinal stromal tumour (GIST) research. Some of the work referenced in this article was supported by generous donations from the GIST Cancer Research Fund and the BP Lester Foundation, and by grant support from the LifeRaft Group. In addition, M.C.H. received research grant funding from the Department of Veterans Affairs (Merit Review Award).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Heinrich.

Ethics declarations

Competing interests

C.L.C. declares honoraria or consulting fees from Novartis and Pfizer, research support from Novartis and clinical trial contracts with Novartis, Synta and Astex. M.C.H. declares equity interest in Molecular MD, research support from Novartis, AROG, Imclone and Ariad, and clinical trials contracts with Novartis, Pfizer, Astex, Synta and AROG. M.C.H. competing interests are managed by Conflict of Interest management committees at OHSU and PVAMC.

Related links

Glossary

Type III receptor tyrosine kinase

A family of kinases sharing a structure that consists of five extracellular immunoglobulin-like domains, a transmembrane domain and a split kinase domain.

Dysphagia

Difficulty swallowing.

Myenteric

Referring to the gastrointestinal tract.

Mesentery

The membranous support for blood vessels serving the gastrointestinal tract.

Omentum

A fatty membrane attached to the stomach and covering the anterior abdomen.

Cross-over

Switching from one arm of a trial to the other.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corless, C., Barnett, C. & Heinrich, M. Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer 11, 865–878 (2011). https://doi.org/10.1038/nrc3143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3143

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer