Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The LKB1–AMPK pathway: metabolism and growth control in tumour suppression

Key Points

  • The serine–threonine liver kinase B1 (LKB1) is inactivated in Peutz–Jeghers syndrome and a large percentage of sporadic non-small cell lung carcinomas and cervical carcinomas.

  • LKB1 acts a master upstream kinase, directly phosphorylating and activating AMP-activated protein kinase (AMPK) and a family of 12 related kinases that have crucial roles in cell growth, metabolism and polarity.

  • The LKB1–AMPK pathway serves as a metabolic checkpoint in the cell, arresting cell growth in conditions of low intracellular ATP levels, such as in low nutrient conditions.

  • One of the central mitogenic pathways that is suppressed by LKB1 and AMPK signalling is the mTOR complex 1 pathway, which is inhibited through AMPK phosphorylation of tuberous sclerosis complex 2 and regulatory associated protein of mTOR (raptor).

  • Overnutrition and hyperglycaemia can suppress LKB1–AMPK signalling, which might contribute to an increased cancer risk in patients who are obese or diabetic. Conversely, activation of LKB1–AMPK signalling might contribute to the suppression of cancer risk that is associated with exercise and caloric restriction. Will AMPK-activating drugs, including existing diabetes therapeutics, find clinical usefulness as anticancer agents?

Abstract

In the past decade, studies of the human tumour suppressor LKB1 have uncovered a novel signalling pathway that links cell metabolism to growth control and cell polarity. LKB1 encodes a serine–threonine kinase that directly phosphorylates and activates AMPK, a central metabolic sensor. AMPK regulates lipid, cholesterol and glucose metabolism in specialized metabolic tissues, such as liver, muscle and adipose tissue. This function has made AMPK a key therapeutic target in patients with diabetes. The connection of AMPK with several tumour suppressors suggests that therapeutic manipulation of this pathway using established diabetes drugs warrants further investigation in patients with cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Proteins in the liver kinase B1 and AMP-activated protein kinase complexes.
Figure 2: Liver kinase B1-dependent signalling.
Figure 3: AMP-activated protein kinase and PI3K signalling converge to antagonistically regulate several downstream effectors, including mTOR complex 1.
Figure 4: Control of cell polarity by liver kinase B1-dependent signalling.

Similar content being viewed by others

References

  1. Hong, S. P., Leiper, F. C., Woods, A., Carling, D. & Carlson, M. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc. Natl Acad. Sci. USA 100, 8839–8843 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hawley, S. A. et al. Complexes between the LKB1 tumor suppressor, STRADα/β and MO25α/β are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2, 28 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Woods, A. et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13, 2004–2008 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Shaw, R. J. et al. The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc. Natl Acad. Sci. USA 101, 3329–3335 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hemminki, A. et al. A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature 391, 184–187 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Sanchez-Cespedes, M. et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res. 62, 3659–3662 (2002).

    CAS  PubMed  Google Scholar 

  7. Ji, H. et al. LKB1 modulates lung cancer differentiation and metastasis. Nature 448, 807–810 (2007). This paper describes the phenotype that results from the combined mutation of oncogenic Kras and LKB1 inactivation in a well-studied mouse model of KRAS-dependent lung carcinogenesis. LKB1 showed the most dramatic phenotype of any tumour suppressor tested when it was combined with Kras mutation.

    Article  CAS  PubMed  Google Scholar 

  8. Wingo, S. N. et al. Somatic LKB1 mutations promote cervical cancer progression. PLoS ONE 4, e5137 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Carling, D., Sanders, M. J. & Woods, A. The regulation of AMP-activated protein kinase by upstream kinases. Int. J. Obes. 32, S55–S59 (2008).

    Article  CAS  Google Scholar 

  10. Lizcano, J. M. et al. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J. 23, 833–843 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jaleel, M. et al. Identification of the sucrose non-fermenting related kinase SNRK, as a novel LKB1 substrate. FEBS Lett. 579, 1417–1423 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Al-Hakim, A. K. et al. 14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK. J. Cell Sci. 118, 5661–5673 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Watts, J. L., Morton, D. G., Bestman, J. & Kemphues, K. J. The C. elegans par-4 gene encodes a putative serine–threonine kinase required for establishing embryonic asymmetry. Development 127, 1467–1475 (2000).

    CAS  PubMed  Google Scholar 

  14. Anderson, K. A. et al. Hypothalamic CaMKK2 contributes to the regulation of energy balance. Cell Metab. 7, 377–388 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Tamas, P. et al. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J. Exp. Med. 203, 1665–1670 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stahmann, N., Woods, A., Carling, D. & Heller, R. Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase-β. Mol. Cell. Biol. 26, 5933–5945 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hawley, S. A. et al. Calmodulin-dependent protein kinase kinase-β is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2, 9–19 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Woods, A. et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2, 21–33 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Hurley, R. L. et al. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280, 29060–29066 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Hardie, D. G., Scott, J. W., Pan, D. A. & Hudson, E. R. Management of cellular energy by the AMP-activated protein kinase system. FEBS Lett. 546, 113–120 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Guertin, D. A. & Sabatini, D. M. Defining the role of mTOR in cancer. Cancer Cell 12, 9–22 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Wullschleger, S., Loewith, R. & Hall, M. N. TOR signaling in growth and metabolism. Cell 124, 471–484 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Holz, M. K., Ballif, B. A., Gygi, S. P. & Blenis, J. mTOR and S6K1 mediate assembly of the translation preinitiation complex through dynamic protein interchange and ordered phosphorylation events. Cell 123, 569–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Choo, A. Y., Yoon, S. O., Kim, S. G., Roux, P. P. & Blenis, J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc. Natl Acad. Sci. USA 105, 17414–17419 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thoreen, C. C. et al. An ATP-competitive mTOR inhibitor reveals rapamycin-insensitive functions of mTORC1. J. Biol. Chem. 284, 8023–8032 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Feldman, M. E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7, e38 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Shaw, R. J. & Cantley, L. C. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441, 424–430 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Huang, J. & Manning, B. D. The TSC1–TSC2 complex: a molecular switchboard controlling cell growth. Biochem. J. 412, 179–190 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Inoki, K., Zhu, T. & Guan, K. L. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115, 577–590 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Corradetti, M. N., Inoki, K., Bardeesy, N., DePinho, R. A. & Guan, K. L. Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz–Jeghers syndrome. Genes Dev. 18, 1533–1538 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shaw, R. J. et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6, 91–99 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, L. et al. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol. Cell 21, 521–531 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Inoki, K. et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126, 955–968 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Hahn-Windgassen, A. et al. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J. Biol. Chem. 280, 32081–32089 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008). This study identified two highly conserved serines in the mTOR binding partner raptor as direct AMPK phosphorylation sites that are needed to inactivate mTORC1 signalling and promote cell cycle arrest.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shackelford, D. B. et al. mTOR- and HIF-1α mediated tumor metabolism in an LKB1 mouse model of Peutz–Jeghers syndrome. Proc. Natl Acad. Sci. USA 18 Jun 2009 (doi:10.1073/pnas.0900465106).

  37. Carretero, J. et al. Dysfunctional AMPK activity, signalling through mTOR and survival in response to energetic stress in LKB1-deficient lung cancer. Oncogene 26, 1616–1625 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Karuman, P. et al. The Peutz–Jegher gene product LKB1 is a mediator of p53-dependent cell death. Mol. Cell 7, 1307–1319 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Tiainen, M., Vaahtomeri, K., Ylikorkala, A. & Makela, T. P. Growth arrest by the LKB1 tumor suppressor: induction of p21WAF1/CIP1. Hum. Mol. Genet. 11, 1497–1504 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Imamura, K., Ogura, T., Kishimoto, A., Kaminishi, M. & Esumi, H. Cell cycle regulation via p53 phosphorylation by a 5′-AMP activated protein kinase activator, 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, in a human hepatocellular carcinoma cell line. Biochem. Biophys. Res. Commun. 287, 562–567 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Jones, R. G. et al. AMP-activated protein kinase induces a p53-dependent metabolic checkpoint. Mol. Cell 18, 283–293 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Khanna, K. K. & Jackson, S. P. DNA double-strand breaks: signaling, repair and the cancer connection. Nature Genet. 27, 247–254 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Levine, A. J., Feng, Z., Mak, T. W., You, H. & Jin, S. Coordination and communication between the p53 and IGF-1–AKT–TOR signal transduction pathways. Genes Dev. 20, 267–275 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Budanov, A. V. & Karin, M. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451–460 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Feng, Z. et al. The regulation of AMPK β1, TSC2, and PTEN expression by p53: stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1–AKT–mTOR pathways. Cancer Res. 67, 3043–3053 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Greer, E. L. et al. The energy sensor AMP-activated protein kinase directly regulates the mammalian FOXO3 transcription factor. J. Biol. Chem. 282, 30107–30119 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Liang, J. et al. The energy sensing LKB1–AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. Nature Cell Biol. 9, 218–224 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Short, J. D. et al. AMP-activated protein kinase signaling results in cytoplasmic sequestration of p27. Cancer Res. 68, 6496–6506 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baba, M. et al. Folliculin encoded by the BHD gene interacts with a binding protein, FNIP1, and AMPK, and is involved in AMPK and mTOR signaling. Proc. Natl Acad. Sci. USA 103, 15552–15557 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, W. et al. AMP-activated protein kinase-regulated phosphorylation and acetylation of importin α1: involvement in the nuclear import of RNA-binding protein HuR. J. Biol. Chem. 279, 48376–48388 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Carling, D., Zammit, V. A. & Hardie, D. G. A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett. 223, 217–222 (1987).

    Article  CAS  PubMed  Google Scholar 

  52. Sato, R., Goldstein, J. L. & Brown, M. S. Replacement of serine-871 of hamster 3-hydroxy-3-methylglutaryl-CoA reductase prevents phosphorylation by AMP-activated kinase and blocks inhibition of sterol synthesis induced by ATP depletion. Proc. Natl Acad. Sci. USA 90, 9261–9265 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhan, Y. et al. Control of cell growth and survival by enzymes of the fatty acid synthesis pathway in HCT-116 colon cancer cells. Clin. Cancer Res. 14, 5735–5742 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Chajes, V., Cambot, M., Moreau, K., Lenoir, G. M. & Joulin, V. Acetyl-CoA carboxylase α is essential to breast cancer cell survival. Cancer Res. 66, 5287–5294 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Brusselmans, K., De Schrijver, E., Verhoeven, G. & Swinnen, J. V. RNA interference-mediated silencing of the acetyl-CoA-carboxylase-a gene induces growth inhibition and apoptosis of prostate cancer cells. Cancer Res. 65, 6719–6725 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Beckers, A. et al. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res. 67, 8180–8187 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Orita, H. et al. Selective inhibition of fatty acid synthase for lung cancer treatment. Clin. Cancer Res. 13, 7139–7145 (2007).

    CAS  PubMed  Google Scholar 

  58. Menendez, J. A. & Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nature Rev. Cancer 7, 763–777 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Marsin, A. S. et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol. 10, 1247–1255 (2000).

    Article  CAS  PubMed  Google Scholar 

  60. Almeida, A., Moncada, S. & Bolanos, J. P. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nature Cell Biol. 6, 45–51 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Bando, H. et al. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Clin. Cancer Res. 11, 5784–5792 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Telang, S. et al. Ras transformation requires metabolic control by 6-phosphofructo-2-kinase. Oncogene 25, 7225–7234 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Clem, B. et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol. Cancer Ther 7, 110–120 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Yang, W. et al. Regulation of transcription by AMP-activated protein kinase: phosphorylation of p300 blocks its interaction with nuclear receptors. J. Biol. Chem. 276, 38341–38344 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Berdeaux, R. et al. SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nature Med. 13, 597–603 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Dequiedt, F. et al. New role for hPar-1 kinases EMK and C-TAK1 in regulating localization and activity of class IIa histone deacetylases. Mol. Cell. Biol. 26, 7086–7102 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McGee, S. L. et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes 57, 860–867 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Koo, S. H. et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature 437, 1109–1111 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Screaton, R. A. et al. The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell 119, 61–74 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Jansson, D. et al. Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2. Proc. Natl Acad. Sci. USA 105, 10161–10166 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005). Using tissue-specific inactivation of LKB1 in mice, this study showed that LKB1-dependent signals are required in the liver for the widely used type 2 diabetes drug metformin to lower blood glucose.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Fu, A. & Screaton, R. A. Using kinomics to delineate signaling pathways: control of CRTC2/TORC2 by the AMPK family. Cell Cycle 7, 3823–3828 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Wu, L. et al. Transforming activity of MECT1–MAML2 fusion oncoprotein is mediated by constitutive CREB activation. EMBO J. 24, 2391–2402 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Canettieri, G. et al. The coactivator CRTC1 promotes cell proliferation and transformation via AP-1. Proc. Natl Acad. Sci. USA 106, 1445–1450 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Canto, C. et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056–1060 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jager, S., Handschin, C., St-Pierre, J. & Spiegelman, B. M. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc. Natl Acad. Sci. USA 104, 12017–12022 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Brooks, C. L. & Gu, W. How does SIRT1 affect metabolism, senescence and cancer? Nature Rev. Cancer 9, 123–128 (2009).

    Article  CAS  Google Scholar 

  78. Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224–236 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kaelin, W. G. Jr & Ratcliffe, P. J. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol. Cell 30, 393–402 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Shaw, R. J. Glucose metabolism and cancer. Curr. Opin. Cell Biol. 18, 598–608 (2006).

    Article  CAS  PubMed  Google Scholar 

  82. Denko, N. C. Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nature Rev. Cancer 8, 705–713 (2008).

    Article  CAS  Google Scholar 

  83. Semenza, G. L. HIF-1 mediates the Warburg effect in clear cell renal carcinoma. J. Bioenerg. Biomembr. 39, 231–234 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Majumder, P. K. et al. mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nature Med. 10, 594–601 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Fantin, V. R., St-Pierre, J. & Leder, P. Attenuation of LDH-A expression uncovers a link between glycolysis, mitochondrial physiology, and tumor maintenance. Cancer Cell 9, 425–434 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Brugarolas, J. et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev. 18, 2893–2904 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Martin, S. G. & St Johnston, D. A role for Drosophila LKB1 in anterior–posterior axis formation and epithelial polarity. Nature 421, 379–384 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Mirouse, V., Swick, L. L., Kazgan, N., St Johnston, D. & Brenman, J. E. LKB1 and AMPK maintain epithelial cell polarity under energetic stress. J. Cell Biol. 177, 387–392 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee, J. H. et al. Energy-dependent regulation of cell structure by AMP-activated protein kinase. Nature 447, 1017–1020 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Tomancak, P. et al. A Drosophila melanogaster homologue of Caenorhabditis elegans par-1 acts at an early step in embryonic-axis formation. Nature Cell Biol. 2, 458–460 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Shulman, J. M., Benton, R. & St Johnston, D. The Drosophila homolog of C. elegans PAR-1 organizes the oocyte cytoskeleton and directs oskar mRNA localization to the posterior pole. Cell 101, 377–388 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Baas, A. F. et al. Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 116, 457–466 (2004). This study was the first to show a key role for mammalian LKB1 in establishing cell polarity, even in cells that lack cell–cell contacts.

    Article  CAS  PubMed  Google Scholar 

  93. Shelly, M., Cancedda, L., Heilshorn, S., Sumbre, G. & Poo, M. M. LKB1/STRAD promotes axon initiation during neuronal polarization. Cell 129, 565–577 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Barnes, A. P. et al. LKB1 and SAD kinases define a pathway required for the polarization of cortical neurons. Cell 129, 549–563 (2007). References 93 and 94 show that LKB1 and its downstream SAD kinases play crucial parts in polarity and axonogenesis in the developing mammalian brain.

    Article  CAS  PubMed  Google Scholar 

  95. Hezel, A. F. & Bardeesy, N. LKB1; linking cell structure and tumor suppression. Oncogene 27, 6908–6919 (2008).

    Article  CAS  PubMed  Google Scholar 

  96. Kojima, Y. et al. Suppression of tubulin polymerization by the LKB1-microtubule-associated protein/microtubule affinity-regulating kinase signaling. J. Biol. Chem. 282, 23532–23540 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Biernat, J. et al. Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Mol. Biol. Cell 13, 4013–4028 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Sun, T. Q. et al. PAR-1 is a Dishevelled-associated kinase and a positive regulator of Wnt signalling. Nature Cell Biol. 3, 628–636 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Ossipova, O., Dhawan, S., Sokol, S. & Green, J. B. Distinct PAR-1 proteins function in different branches of Wnt signaling during vertebrate development. Dev. Cell 8, 829–841 (2005).

    Article  CAS  PubMed  Google Scholar 

  100. Elbert, M., Cohen, D. & Musch, A. PAR1b promotes cell–cell adhesion and inhibits Dishevelled-mediated transformation of Madin-Darby canine kidney cells. Mol. Biol. Cell 17, 3345–3355 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Schlessinger, K., McManus, E. J. & Hall, A. Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J. Cell Biol. 178, 355–361 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang, X. et al. Dishevelled promotes axon differentiation by regulating atypical protein kinase C. Nature Cell Biol. 9, 743–754 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Narimatsu, M. et al. Regulation of planar cell polarity by Smurf ubiquitin ligases. Cell 137, 295–307 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Zhang, L., Li, J., Young, L. H. & Caplan, M. J. AMP-activated protein kinase regulates the assembly of epithelial tight junctions. Proc. Natl Acad. Sci. USA 103, 17272–17277 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zheng, B. & Cantley, L. C. Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase. Proc. Natl Acad. Sci. USA 104, 819–822 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Sebbagh, M., Santoni, M. J., Hall, B., Borg, J. P. & Schwartz, M. A. Regulation of LKB1/STRAD localization and function by E-cadherin. Curr. Biol. 19, 37–42 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Horman, S. et al. AMP-activated protein kinase phosphorylates and desensitizes smooth muscle myosin light chain kinase. J. Biol. Chem. 283, 18505–18512 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Yamamoto, H. et al. Identification of a novel substrate for TNFα-induced kinase NUAK2. Biochem. Biophys. Res. Commun. 365, 541–547 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. ten Klooster, J. P. et al. Mst4 and Ezrin induce brush borders downstream of the Lkb1/Strad/Mo25 polarization complex. Dev. Cell 16, 551–562 (2009).

    Article  CAS  PubMed  Google Scholar 

  110. Partanen, J. I., Nieminen, A. I., Makela, T. P. & Klefstrom, J. Suppression of oncogenic properties of c-Myc by LKB1-controlled epithelial organization. Proc. Natl Acad. Sci. USA 104, 14694–14699 (2007).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  111. Aranda, V. et al. Par6–aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nature Cell Biol. 8, 1235–1245 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Dow, L. E. et al. The tumour-suppressor Scribble dictates cell polarity during directed epithelial migration: regulation of Rho GTPase recruitment to the leading edge. Oncogene 26, 2272–2282 (2007).

    Article  CAS  PubMed  Google Scholar 

  113. Nolan, M. E. et al. The polarity protein Par6 induces cell proliferation and is overexpressed in breast cancer. Cancer Res. 68, 8201–8209 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ylikorkala, A. et al. Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science 293, 1323–1326 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Bardeesy, N. et al. Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature 419, 162–167 (2002).

    Article  CAS  PubMed  Google Scholar 

  116. Miyoshi, H. et al. Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Res. 62, 2261–2266 (2002).

    CAS  PubMed  Google Scholar 

  117. Jishage, K. et al. Role of Lkb1, the causative gene of Peutz–Jegher's syndrome, in embryogenesis and polyposis. Proc. Natl Acad. Sci. USA 99, 8903–8908 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rossi, D. J. et al. Induction of cyclooxygenase-2 in a mouse model of Peutz–Jeghers polyposis. Proc. Natl Acad. Sci. USA 99, 12327–12332 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Katajisto, P. et al. LKB1 signaling in mesenchymal cells required for suppression of gastrointestinal polyposis. Nature Genet. 40, 455–459 (2008).

    Article  CAS  PubMed  Google Scholar 

  120. Vaahtomeri, K. et al. Lkb1 is required for TGFβ-mediated myofibroblast differentiation. J. Cell Sci. 121, 3531–3540 (2008).

    Article  CAS  PubMed  Google Scholar 

  121. Contreras, C. M. et al. Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas. Cancer Res. 68, 759–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  122. Carretero, J., Medina, P. P., Pio, R., Montuenga, L. M. & Sanchez-Cespedes, M. Novel and natural knockout lung cancer cell lines for the LKB1/STK11 tumor suppressor gene. Oncogene 23, 5084–5091 (2004).

    Article  PubMed  CAS  Google Scholar 

  123. Makowski, L. & Hayes, D. N. Role of LKB1 in lung cancer development. Br. J. Cancer 99, 683–688 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Gurumurthy, S., Hezel, A. F., Berger, J. H., Bosenberg, M. W. & Bardeesy, N. LKB1 deficiency sensitizes mice to carcinogen-induced tumorigenesis. Cancer Res. 68, 55–63 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hardie, D. G. AMP-activated protein kinase as a drug target. Annu. Rev. Pharmacol. Toxicol. 47, 185–210 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Hundal, R. S. et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49, 2063–2069 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Hardie, D. G. Neither LKB1 nor AMPK are the direct targets of metformin. Gastroenterology 131, 973 (2006).

    Article  PubMed  Google Scholar 

  128. Legro, R. S. et al. Ovulatory response to treatment of polycystic ovary syndrome is associated with a polymorphism in the STK11 gene. J. Clin. Endocrinol. Metab. 93, 792–800 (2008).

    Article  CAS  PubMed  Google Scholar 

  129. Shu, Y. et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin action. J. Clin. Invest. 117, 1422–1431 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Schneider, M. B. et al. Prevention of pancreatic cancer induction in hamsters by metformin. Gastroenterology 120, 1263–1270 (2001).

    Article  CAS  PubMed  Google Scholar 

  131. Anisimov, V. N. et al. Effect of metformin on life span and on the development of spontaneous mammary tumors in HER-2/neu transgenic mice. Exp. Gerontol. 40, 685–693 (2005).

    Article  CAS  PubMed  Google Scholar 

  132. Zakikhani, M., Dowling, R., Fantus, I. G., Sonenberg, N. & Pollak, M. Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res. 66, 10269–10273 (2006).

    Article  CAS  PubMed  Google Scholar 

  133. Zakikhani, M., Dowling, R. J., Sonenberg, N. & Pollak, M. N. The effects of adiponectin and metformin on prostate and colon neoplasia involve activation of AMP-activated protein kinase. Cancer Prev. Res. 1, 369–375 (2008).

    Article  CAS  Google Scholar 

  134. Swinnen, J. V. et al. Mimicry of a cellular low energy status blocks tumor cell anabolism and suppresses the malignant phenotype. Cancer Res. 65, 2441–2448 (2005).

    Article  CAS  PubMed  Google Scholar 

  135. Buzzai, M. et al. Systemic treatment with the antidiabetic drug metformin selectively impairs p53-deficient tumor cell growth. Cancer Res. 67, 6745–6752 (2007). Following up these authors' previous finding that AMPK can activate a p53-dependent checkpoint, this study shows that metformin and AICAR have p53-dependent anti-tumour effects in xenografts.

    Article  CAS  PubMed  Google Scholar 

  136. Algire, C., Zakikhani, M., Blouin, M. J., Shuai, J. H. & Pollak, M. Metformin attenuates the stimulatory effect of a high-energy diet on in vivo LLC1 carcinoma growth. Endocr. Relat. Cancer 15, 833–839 (2008).

    Article  CAS  PubMed  Google Scholar 

  137. Huang, X. et al. Important role of the LKB1–AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem. J. 412, 211–221 (2008). This is the first study to directly examine the ability of metformin, phenformin and the targeted small molecule A769662, which activates AMPK, to suppress cancer in a spontaneously arising genetic mouse model.

    Article  CAS  PubMed  Google Scholar 

  138. Dykens, J. A. et al. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro. Toxicol. Appl. Pharmacol. 233, 203–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Owen, M. R., Doran, E. & Halestrap, A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Scott, J. W. et al. Thienopyridone drugs are selective activators of AMP-activated protein kinase β1-containing complexes. Chem. Biol. 15, 1220–1230 (2008).

    Article  CAS  PubMed  Google Scholar 

  141. Cool, B. et al. Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 3, 403–416 (2006).

    Article  CAS  PubMed  Google Scholar 

  142. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. & Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304–1305 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Bowker, S. L., Majumdar, S. R., Veugelers, P. & Johnson, J. A. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin. Diabetes Care 29, 254–258 (2006).

    Article  PubMed  Google Scholar 

  144. Jiralerspong, S. et al. Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J. Clin. Oncol. 1 Jun 2009 (doi: 10.1200/JCO.2009.19.6410).

  145. Goodwin, P. J., Ligibel, J. A. & Stambolic, V. Metformin in breast cancer: time for action. J. Clin. Oncol. 1 Jun 2009 (doi: 10.1200/JCO.2009.22.1630).

  146. Pollak, M. Insulin and insulin-like growth factor signalling in neoplasia. Nature Rev. Cancer 8, 915–928 (2008).

    Article  CAS  Google Scholar 

  147. Erdemoglu, E., Guney, M., Giray, S. G., Take, G. & Mungan, T. Effects of metformin on mammalian target of rapamycin in a mouse model of endometrial hyperplasia. Eur. J. Obstet. Gynecol. Reprod. Biol. 4 Jun 2009 (doi:10.1016/j.ejogrb.2009.04.034).

  148. Memmott, R. M. et al. Phosphatidylinositol ether lipid analogues induce AMP-activated protein kinase-dependent death in LKB1-mutant non-small cell lung cancer cells. Cancer Res. 68, 580–588 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Nafz, J. et al. Interference with energy metabolism by 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside induces HPV suppression in cervical carcinoma cells and apoptosis in the absence of LKB1. Biochem. J. 403, 501–510 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Buzzai, M. et al. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid β-oxidation. Oncogene 21, 4165–4173 (2005).

    Article  CAS  Google Scholar 

  151. Shell, S. A. et al. Activation of AMPK is necessary for killing cancer cells and sparing cardiac cells. Cell Cycle 7, 1769–1775 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Laderoute, K. R. et al. 5′-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol. Cell. Biol. 26, 5336–5347 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. O'Connor, M. J., Martin, N. M. & Smith, G. C. Targeted cancer therapies based on the inhibition of DNA strand break repair. Oncogene 26, 7816–7824 (2007).

    Article  CAS  PubMed  Google Scholar 

  154. Podsypanina, K. et al. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc. Natl Acad. Sci. USA 98, 10320–10325 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Johannessen, C. M. et al. TORC1 is essential for NF1-associated malignancies. Curr. Biol. 18, 56–62 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Lee, L. et al. Efficacy of a rapamycin analog (CCI-779) and IFN-γ in tuberous sclerosis mouse models. Genes Chromosom. Cancer 42, 213–227 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Wei, C. et al. Suppression of Peutz–Jeghers polyposis by targeting mammalian target of rapamycin signaling. Clin. Cancer Res. 14, 1167–1171 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Robinson, J. et al. Oral rapamycin reduces tumour burden and vascularization in Lkb1+/− mice. J. Pathol. 31 Mar 2009 (doi: 10.1002/path.2562).

  159. Hudes, G. et al. Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N. Engl. J. Med. 356, 2271–2281 (2007).

    Article  CAS  PubMed  Google Scholar 

  160. Cloughesy, T. F. et al. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med. 5, e8 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Bissler, J. J. et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med. 358, 140–151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Davies, D. M. et al. Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis. N. Engl. J. Med. 358, 200–203 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Martinez, M. E., Marshall, J. R. & Giovannucci, E. Diet and cancer prevention: the roles of observation and experimentation. Nature Rev. Cancer 8, 694–703 (2008).

    Article  CAS  Google Scholar 

  164. McTiernan, A. Mechanisms linking physical activity with cancer. Nature Rev. Cancer 8, 205–211 (2008).

    Article  CAS  Google Scholar 

  165. Jiang, W., Zhu, Z. & Thompson, H. J. Dietary energy restriction modulates the activity of AMP-activated protein kinase, Akt, and mammalian target of rapamycin in mammary carcinomas, mammary gland, and liver. Cancer Res. 68, 5492–5499 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Moore, T. et al. Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues. Cancer Prev. Res. 1, 65–76 (2008).

    Article  CAS  Google Scholar 

  167. Kelesidis, I., Kelesidis, T. & Mantzoros, C. S. Adiponectin and cancer: a systematic review. Br. J. Cancer 94, 1221–1225 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Vona-Davis, L., Howard-McNatt, M. & Rose, D. P. Adiposity, type 2 diabetes and the metabolic syndrome in breast cancer. Obes. Rev. 8, 395–408 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Sugiyama, M. et al. Adiponectin inhibits colorectal cancer cell growth through the AMPK/mTOR pathway. Int. J. Oncol. 34, 339–344 (2009).

    CAS  PubMed  Google Scholar 

  170. Zheng, B. et al. Oncogenic B-RAF negatively regulates the tumor suppressor LKB1 to promote melanoma cell proliferation. Mol. Cell 33, 237–247 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Hallstrom, T. C., Mori, S. & Nevins, J. R. An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer Cell 13, 11–22 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lee, M. & Vasioukhin, V. Cell polarity and cancer--cell and tissue polarity as a non-canonical tumor suppressor. J. Cell Sci. 121, 1141–1150 (2008).

    Article  CAS  PubMed  Google Scholar 

  173. Saadat, I. et al. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447, 330–333 (2007).

    Article  CAS  PubMed  Google Scholar 

  174. Hoyer-Hansen, M. & Jaattela, M. AMP-activated protein kinase: a universal regulator of autophagy? Autophagy 3, 381–383 (2007).

    Article  PubMed  Google Scholar 

  175. Wang, W., Yang, X., Lopez de Silanes, I., Carling, D. & Gorospe, M. Increased AMP:ATP ratio and AMP-activated protein kinase activity during cellular senescence linked to reduced HuR function. J. Biol. Chem. 278, 27016–27023 (2003).

    Article  CAS  PubMed  Google Scholar 

  176. Brugarolas, J. & Kaelin, W. G., Jr. Dysregulation of HIF and VEGF is a unifying feature of the familial hamartoma syndromes. Cancer Cell 6, 7–10 (2004).

    Article  CAS  PubMed  Google Scholar 

  177. Brugarolas, J. B., Vazquez, F., Reddy, A., Sellers, W. R. & Kaelin, W. G. Jr. TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4, 147–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Hurov, J. B., Watkins, J. L. & Piwnica-Worms, H. Atypical PKC phosphorylates PAR-1 kinases to regulate localization and activity. Curr. Biol. 14, 736–741 (2004).

    Article  CAS  PubMed  Google Scholar 

  179. Suzuki, A. et al. aPKC acts upstream of PAR-1b in both the establishment and maintenance of mammalian epithelial polarity. Curr. Biol. 14, 1425–1435 (2004).

    Article  CAS  PubMed  Google Scholar 

  180. Kusakabe, M. & Nishida, E. The polarity-inducing kinase Par-1 controls Xenopus gastrulation in cooperation with 14-3-3 and aPKC. EMBO J. 23, 4190–4201 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhang, Y. et al. PAR-1 kinase phosphorylates Dlg and regulates its postsynaptic targeting at the Drosophila neuromuscular junction. Neuron 53, 201–215 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Benton, R. & St Johnston, D. Drosophila PAR-1 and 14-3-3 inhibit Bazooka/PAR-3 to establish complementary cortical domains in polarized cells. Cell 115, 691–704 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Ossipova, O., Bardeesy, N., DePinho, R. A. & Green, J. B. LKB1 (XEEK1) regulates Wnt signalling in vertebrate development. Nature Cell Biol. 5, 889–894 (2003).

    Article  CAS  PubMed  Google Scholar 

  184. Asada, N., Sanada, K. & Fukada, Y. LKB1 regulates neuronal migration and neuronal differentiation in the developing neocortex through centrosomal positioning. J. Neurosci 27, 11769–11775 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Zhang, S. et al. The tumor suppressor LKB1 regulates lung cancer cell polarity by mediating cdc42 recruitment and activity. Cancer Res. 68, 740–748 (2008).

    Article  CAS  PubMed  Google Scholar 

  186. Alessi, D. R., Sakamoto, K. & Bayascas, J. R. Lkb1-dependent signaling pathways. Annu. Rev. Biochem. 75, 137–163 (2006).

    Article  CAS  PubMed  Google Scholar 

  187. Puffenberger, E. G. et al. Polyhydramnios, megalencephaly and symptomatic epilepsy caused by a homozygous 7-kilobase deletion in LYK5. Brain 130, 1929–1941 (2007).

    Article  PubMed  Google Scholar 

  188. Towler, M. C. et al. A novel short splice variant of the tumour suppressor LKB1 is required for spermiogenesis. Biochem. J. 416, 1–14 (2008).

    Article  CAS  PubMed  Google Scholar 

  189. Denison, F. C., Hiscock, N. J., Carling, D. & Woods, A. Characterization of an alternative splice variant of LKB1. J. Biol. Chem. 284, 67–76 (2009).

    Article  CAS  PubMed  Google Scholar 

  190. Marignani, P. A. et al. Novel splice isoforms of STRADα differentially affect LKB1 activity, complex assembly and subcellular localization. Cancer Biol. Ther. 6, 1627–1631 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. McBride, A., Ghilagaber, S., Nikolaev, A. & Hardie, D. G. The glycogen-binding domain on the AMPK β subunit allows the kinase to act as a glycogen sensor. Cell Metab. 9, 23–34 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Xiao, B. et al. Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449, 496–500 (2007).

    Article  CAS  PubMed  Google Scholar 

  193. Sanders, M. J., Grondin, P. O., Hegarty, B. D., Snowden, M. A. & Carling, D. Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade. Biochem. J. 403, 139–148 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Dolinsky, V. W. & Dyck, J. R. Role of AMP-activated protein kinase in healthy and diseased hearts. Am. J. Physiol. Heart Circ. Physiol. 291, H2557–H2569 (2006).

    Article  CAS  PubMed  Google Scholar 

  195. Robinson, J., Nye, E., Stamp, G. & Silver, A. Osteogenic tumours in Lkb1-deficient mice. Exp. Mol. Pathol. 85, 223–226 (2008).

    Article  CAS  PubMed  Google Scholar 

  196. Takeda, H., Miyoshi, H., Kojima, Y., Oshima, M. & Taketo, M. M. Accelerated onsets of gastric hamartomas and hepatic adenomas/carcinomas in Lkb1+/− p53−/− compound mutant mice. Oncogene 25, 1816–1820 (2006).

    Article  CAS  PubMed  Google Scholar 

  197. Wei, C. et al. Mutation of Lkb1 and p53 genes exert a cooperative effect on tumorigenesis. Cancer Res. 65, 11297–11303 (2005).

    Article  CAS  PubMed  Google Scholar 

  198. Shorning, B. Y. et al. Lkb1 deficiency alters goblet and paneth cell differentiation in the small intestine. PLoS ONE 4, e4264 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Pearson, H. B., McCarthy, A., Collins, C. M., Ashworth, A. & Clarke, A. R. Lkb1 deficiency causes prostate neoplasia in the mouse. Cancer Res. 68, 2223–2232 (2008).

    Article  CAS  PubMed  Google Scholar 

  200. Hezel, A. F. et al. Pancreatic LKB1 deletion leads to acinar polarity defects and cystic neoplasms. Mol. Cell. Biol. 28, 2414–2425 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We regret being unable to cite the work of many of our colleagues owing to space limitations. The authors thank K. Lamia for critical reading and editing of the manuscript. The authors' research is funded by grants from the National Institutes of Health (R01 DK080425 and P01 CA120964), American Cancer Society and V Foundation for Cancer Research to R.J.S. D.B.S. was supported by training grant T32 CA009370 to the Salk Institute Center for Cancer Research. R.J.S. is an early career scientist of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reuben J. Shaw.

Related links

Related links

DATABASES

National Cancer Institute Drug Dictionary 

[18F] 2-fluoro-2-deoxy-D-glucose

metformin

rapamycin

FURTHER INFORMATION

Reuben J. Shaw's homepage

Glossary

Peutz–Jeghers syndrome

A disorder that is characterized by the development of gastrointestinal hamartomas and an increased predisposition to many other malignancies, including those arising in colon, breast, ovarian, pancreatic and lung tissues.

Tuberous sclerosis complex

A familial tumour syndrome that is induced through mutation of the mTOR complex 1 regulators TSC1 and TSC2.

Steatosis

Excess intracellular lipid accumulation, which can occur, for example, in the liver of patients who are diabetic or obese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shackelford, D., Shaw, R. The LKB1–AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9, 563–575 (2009). https://doi.org/10.1038/nrc2676

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2676

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing