Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The biology of Hodgkin's lymphoma

Key Points

  • Hodgkin and Reed–Sternberg (HRS) cells of classical Hodgkin's lymphoma are probably derived from germinal centre B cells that have acquired disadvantageous immunoglobulin variable chain gene mutations and normally would have undergone apoptosis, whereas lymphocytic and histiocytic (L&H) cells of NLPHL appear to derive from antigen-selected germinal centre B cells. Few cases of classical Hodgkin's lymphoma originate from T cells.

  • Classical Hodgkin's lymphoma is unique among human lymphomas in the extent to which the lymphoma cells have undergone reprogramming of gene expression. They have lost expression of most B cell-typical genes and acquired expression of multiple genes that are typical for other types of cells of the immune system.

  • Multiple signalling pathways and transcription factors show deregulated activity in HRS cells, including nuclear factor-κB, Jak–Stat, PI3K–Akt, Erk, AP1, notch 1 and receptor tyrosine kinases.

  • The transforming events involved in the generation of HRS cells are only partly understood, but several known recurrent genetic lesions involve members of the nuclear factor-κB or Jak–Stat signalling pathways.

  • HRS cells attract many cells into the lymphoma tissue, resulting in a typical inflammatory microenvironment. This environment probably promotes the survival of HRS cells and helps them to escape attack from cytotoxic T or natural killer cells.

Abstract

Hodgkin's lymphoma was first described in 1832. The aetiology of this lymphoma, however, remained enigmatic for a long time. Only within the past 10 years has the B-cell nature of the pathognomonic Hodgkin and Reed–Sternberg (HRS) cells been revealed, along with several recurrent genetic lesions. The pathogenetic role for Epstein–Barr virus infection has also been substantiated. HRS cells in classical Hodgkin's lymphoma have several characteristics that are unusual for lymphoid tumour cells, and the Hodgkin's lymphoma microenvironment is dominated by an extensive mixed, potentially inflammatory cellular infiltrate. Understanding the contribution of all of these changes to the pathogenesis of this disease is essential for the development of novel therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hodgkin and Reed–Sternberg (HRS) cells in their microenvironment.
Figure 2: Reprogramming of Hodgkin and Reed–Sternberg (HRS) cells.
Figure 3: Nuclear factor-κB (NF-κB) in Hodgkin and Reed–Sternberg (HRS) cells.
Figure 4: Cellular interactions in the Hodgkin's lymphoma microenvironment.

Similar content being viewed by others

References

  1. Hodgkin, T. On some morbid appearances of the absorbent glands and spleen. Med. Chir. Trans. 17, 68–114 (1832).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Reed, D. On the pathological changes in Hodgkin's disease with special reference to its relation to tuberculosis. John Hopkins Hosp. Rep. 10, 133–193 (1902).

    Google Scholar 

  3. Sternberg, C. Übe r eine eigenartige unter dem Bilde der Pseudoleukämie verlaufende Tuberkolose des lymphatischen Apparates. Z. Heilkunde 19, 21–90 (1898) (in German).

    Google Scholar 

  4. Jaffe, E. S., Harris, N. L., Stein, H. & Vardiman, J. W. WHO Classification of Tumors: Pathology and Genetics of Tumors of Haematopoietic and Lymphoid Tissues (IARC Press, Lyon, 2001).

    Google Scholar 

  5. Diehl, V., Thomas, R. K. & Re, D. Part II: Hodgkin's lymphoma — diagnosis and treatment. Lancet Oncol. 5, 19–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751–758 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Küppers, R., Zhao, M., Hansmann, M. L. & Rajewsky, K. Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J. 12, 4955–4967 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Allen, C. D., Okada, T. & Cyster, J. G. Germinal-center organization and cellular dynamics. Immunity 27, 190–202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carbone, A. et al. Expression status of BCL-6 and syndecan-1 identifies distinct histogenetic subtypes of Hodgkin's disease. Blood 92, 2220–2228 (1998).

    CAS  PubMed  Google Scholar 

  10. Greiner, A. et al. Differential expression of activation-induced cytidine deaminase (AID) in nodular lymphocyte-predominant and classical Hodgkin lymphoma. J. Pathol. 205, 541–547 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Hansmann, M.-L., Weiss, L. M., Stein, H., Harris, N. L. & Jaffe, E. S. in Hodgkin's Disease (eds Mauch, P. M., Armitage, J. O., Diehl, V., Hoppe, R. T. & Weiss, L. M.) 169–180 (Lippencott Williams & Wilkins, Philadelphia, 1999).

    Google Scholar 

  12. Braeuninger, A. et al. Hodgkin and Reed–Sternberg cells in lymphocyte predominant Hodgkin disease represent clonal populations of germinal center-derived tumor B cells. Proc. Natl Acad. Sci. USA 94, 9337–9342 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Küppers, R. et al. Hodgkin disease: Hodgkin and Reed–Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc. Natl Acad. Sci. USA 91, 10962–10966 (1994). The first demonstration that HRS and L&H cells are clonal populations of B cells.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Marafioti, T. et al. Origin of nodular lymphocyte-predominant Hodgkin's disease from a clonal expansion of highly mutated germinal-center B cells. N. Engl. J. Med. 337, 453–458 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Brune, V. et al. Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J. Exp. Med. 205, 2251–2268 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kanzler, H., Küppers, R., Hansmann, M. L. & Rajewsky, K. Hodgkin and Reed–Sternberg cells in Hodgkin's disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J. Exp. Med. 184, 1495–1505 (1996). This study provided the first evidence that HRS cells are derived from 'crippled', BCR-deficient germinal centre B cells.

    Article  CAS  PubMed  Google Scholar 

  17. Bräuninger, A., Wacker, H. H., Rajewsky, K., Küppers, R. & Hansmann, M. L. Typing the histogenetic origin of the tumor cells of lymphocyte-rich classical Hodgkin's lymphoma in relation to tumor cells of classical and lymphocyte-predominance Hodgkin's lymphoma. Cancer Res. 63, 1644–1651 (2003).

    PubMed  Google Scholar 

  18. Küppers, R. & Rajewsky, K. The origin of Hodgkin and Reed/Sternberg cells in Hodgkin's disease. Annu. Rev. Immunol. 16, 471–493 (1998).

    Article  PubMed  Google Scholar 

  19. Klein, U. et al. Somatic hypermutation in normal and transformed human B cells. Immunol. Rev. 162, 261–280 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Irsch, J. et al. Class switch recombination was specifically targeted to immunoglobulin (Ig)G4 or IgA in Hodgkin's disease-derived cell lines. Br. J. Haematol. 113, 785–793 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Martin-Subero, J. I. et al. Chromosomal breakpoints affecting immunoglobulin loci are recurrent in Hodgkin and Reed–Sternberg cells of classical Hodgkin lymphoma. Cancer Res. 66, 10332–10338 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Bräuninger, A. et al. Identification of common germinal-center B-cell precursors in two patients with both Hodgkin's disease and Non-Hodgkin's lymphoma. N. Engl. J. Med. 340, 1239–1247 (1999).

    Article  PubMed  Google Scholar 

  23. Marafioti, T. et al. Classical Hodgkin's disease and follicular lymphoma originating from the same germinal center B cell. J. Clin. Oncol. 17, 3804–3809 (1999). References 22 and 23 demonstrated the close relationship of classical Hodgkin's lymphoma and non-Hodgkin's lymphomas by identifying common germinal centre B-cell precursors in composite lymphomas.

    Article  CAS  PubMed  Google Scholar 

  24. Müschen, M. et al. Rare occurrence of classical Hodgkin's disease as a T cell lymphoma. J. Exp. Med. 191, 387–394 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Seitz, V. et al. Detection of clonal T-cell receptor gamma-chain gene rearrangements in Reed–Sternberg cells of classic Hodgkin disease. Blood 95, 3020–3024 (2000).

    CAS  PubMed  Google Scholar 

  26. Tzankov, A. et al. Rare expression of T-cell markers in classical Hodgkin's lymphoma. Mod. Pathol. 18, 1542–1549 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Aguilera, N. S. et al. Gene rearrangement and comparative genomic hybridization studies of classic Hodgkin lymphoma expressing T-cell antigens. Arch. Pathol. Lab. Med. 130, 1772–1779 (2006).

    CAS  PubMed  Google Scholar 

  28. Willenbrock, K. et al. T-cell variant of classical Hodgkin's lymphoma with nodal and cutaneous manifestations demonstrated by single-cell polymerase chain reaction. Lab. Invest. 82, 1103–1109 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Barry, T. S., Jaffe, E. S., Sorbara, L., Raffeld, M. & Pittaluga, S. Peripheral T-cell lymphomas expressing CD30 and CD15. Am. J. Surg. Pathol. 27, 1513–1522 (2003).

    Article  PubMed  Google Scholar 

  30. Willenbrock, K. et al. Common features and differences in the transcriptome of large cell anaplastic lymphoma and classical Hodgkin's lymphoma. Haematologica 91, 596–604 (2006).

    CAS  PubMed  Google Scholar 

  31. Küppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nature Rev. Cancer 5, 251–262 (2005).

    Article  CAS  Google Scholar 

  32. Schwering, I. et al. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed–Sternberg cells of Hodgkin lymphoma. Blood 101, 1505–1512 (2003). This study demonstrated the global downregulation of B-cell molecules in HRS cells.

    Article  CAS  PubMed  Google Scholar 

  33. Carbone, A. et al. Expression of functional CD40 antigen on Reed–Sternberg cells and Hodgkin's disease cell lines. Blood 85, 780–789 (1995).

    CAS  PubMed  Google Scholar 

  34. Van Gool, S. W. et al. Expression of B7–2 (CD86) molecules by Reed–Sternberg cells of Hodgkin's disease. Leukemia 11, 846–851 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Mathas, S. et al. Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nature Immunol. 7, 207–215 (2006). This paper provided insight into the mechanisms involved in the reprogramming of HRS cells.

    Article  CAS  Google Scholar 

  36. Takahashi, H. et al. Immunophenotypes of Reed–Sternberg cells and their variants: a study of 68 cases of Hodgkin's disease. Tohoku J. Exp. Med. 177, 193–211 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Drexler, H. G. Recent results on the biology of Hodgkin and Reed–Sternberg cells. I. Biopsy material. Leuk. Lymphoma 8, 283–313 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. van den Berg, A., Visser, L. & Poppema, S. High expression of the CC chemokine TARC in Reed–Sternberg cells. A possible explanation for the characteristic T-cell infiltration Hodgkin's lymphoma. Am. J. Pathol. 154, 1685–1691 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Re, D. et al. Oct-2 and Bob-1 deficiency in Hodgkin and Reed Sternberg cells. Cancer Res. 61, 2080–2084 (2001).

    CAS  PubMed  Google Scholar 

  40. Stein, H. et al. Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood 97, 496–501 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Torlakovic, E., Tierens, A., Dang, H. D. & Delabie, J. The transcription factor PU.1, necessary for B-cell development is expressed in lymphocyte predominance, but not classical Hodgkin's disease. Am. J. Pathol. 159, 1807–1814 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Doerr, J. R. et al. Patterned CpG methylation of silenced B cell gene promoters in classical Hodgkin lymphoma-derived and primary effusion lymphoma cell lines. J. Mol. Biol. 350, 631–640 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Ushmorov, A. et al. Epigenetic processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood 107, 2493–2500 (2005).

    Article  PubMed  CAS  Google Scholar 

  44. Hertel, C. B., Zhou, X. G., Hamilton-Dutoit, S. J. & Junker, S. Loss of B cell identity correlates with loss of B cell-specific transcription factors in Hodgkin/Reed–Sternberg cells of classical Hodgkin lymphoma. Oncogene 21, 4908–4920 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Pongubala, J. M. et al. Transcription factor EBF restricts alternative lineage options and promotes B cell fate commitment independently of Pax5. Nature Immunol. 9, 203–215 (2008).

    Article  CAS  Google Scholar 

  46. Küppers, R. et al. Identification of Hodgkin and Reed–Sternberg cell-specific genes by gene expression profiling. J. Clin. Invest. 111, 529–537 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Renné, C. et al. Aberrant expression of ID2, a suppressor of B-cell-specific gene expression, in Hodgkin's lymphoma. Am. J. Pathol. 169, 655–664 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hacker, C. et al. Transcriptional profiling identifies Id2 function in dendritic cell development. Nature Immunol. 4, 380–386 (2003).

    Article  CAS  Google Scholar 

  49. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Foss, H. D. et al. Frequent expression of the B-cell-specific activator protein in Reed–Sternberg cells of classical Hodgkin's disease provides further evidence for its B-cell origin. Blood 94, 3108–3113 (1999).

    CAS  PubMed  Google Scholar 

  51. Cobaleda, C., Schebesta, A., Delogu, A. & Busslinger, M. Pax5: the guardian of B cell identity and function. Nature Immunol. 8, 463–470 (2007).

    Article  CAS  Google Scholar 

  52. Jundt, F. et al. Activated Notch 1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 99, 3398–3403 (2001).

    Article  Google Scholar 

  53. Jundt, F. et al. Aberrant expression of Notch1 interferes with the B-lymphoid phenotype of neoplastic B cells in classical Hodgkin lymphoma. Leukemia 22 1587–1594 (2008). References 52 and 53 showed aberrant expression of notch 1 in HRS cells and that this contributes to the lost B-cell phenotype of these cells.

    Article  CAS  PubMed  Google Scholar 

  54. Scheeren, F. A. et al. IL-21 is expressed in Hodgkin lymphoma and activates STAT5; evidence that activated STAT5 is required for Hodgkin lymphomagenesis. Blood 111, 4706–4715 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schneider, E. M. et al. The early transcription factor GATA-2 is expressed in classical Hodgkin's lymphoma. J. Pathol. 204, 538–545 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Kumano, K. et al. Notch1 inhibits differentiation of hematopoietic cells by sustaining GATA-2 expression. Blood 98, 3283–3289 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Dukers, D. F. et al. Unique polycomb gene expression pattern in Hodgkin's lymphoma and Hodgkin's lymphoma-derived cell lines. Am. J. Pathol. 164, 873–881 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Raaphorst, F. M. et al. Coexpression of BMI-1 and EZH2 polycomb group genes in Reed–Sternberg cells of Hodgkin's disease. Am. J. Pathol. 157, 709–715 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sanchez-Beato, M. et al. Abnormal PcG protein expression in Hodgkin's lymphoma. Relation with E2F6 and NFkappaB transcription factors. J. Pathol. 204, 528–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Hu, M. et al. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 11, 774–785 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Miyamoto, T. et al. Myeloid or lymphoid promiscuity as a critical step in hematopoietic lineage commitment. Dev. Cell 3, 137–147 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Dutton, A. et al. Bmi-1 is induced by the Epstein–Barr virus oncogene LMP1 and regulates the expression of viral target genes in Hodgkin lymphoma cells. Blood 109, 2597–2603 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Feuerborn, A. et al. Dysfunctional p53 deletion mutants in cell lines derived from Hodgkin's lymphoma. Leuk. Lymphoma 47, 1932–1940 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Maggio, E. M., Stekelenburg, E., Van den Berg, A. & Poppema, S. TP53 gene mutations in Hodgkin lymphoma are infrequent and not associated with absence of Epstein–Barr virus. Int. J. Cancer 94, 60–66 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Montesinos-Rongen, M., Roers, A., Küppers, R., Rajewsky, K. & Hansmann, M.-L. Mutation of the p53 gene is not a typical feature of Hodgkin and Reed–Sternberg cells in Hodgkin's disease. Blood 94, 1755–1760 (1999).

    CAS  PubMed  Google Scholar 

  66. Kashkar, H. et al. XIAP-mediated caspase inhibition in Hodgkin's lymphoma-derived B cells. J. Exp. Med. 198, 341–347 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dutton, A. et al. Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin's lymphoma cells from autonomous Fas-mediated death. Proc. Natl Acad. Sci. USA 101, 6611–6616 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mathas, S. et al. c-FLIP mediates resistance of Hodgkin/Reed–Sternberg cells to death receptor-induced apoptosis. J. Exp. Med. 199, 1041–1052 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wlodarska, I. et al. Frequent occurrence of BCL6 rearrangements in nodular lymphocyte predominance Hodgkin lymphoma but not in classical Hodgkin lymphoma. Blood 101, 706–710 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Joos, S. et al. Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res. 60, 549–552 (2000).

    CAS  PubMed  Google Scholar 

  71. Weniger, M. A. et al. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 25, 2679–2684 (2006). This paper showed that frequent somatic mutations in SOCS1 in HRS cells were probably a factor contributing to constitutive STAT activity in these tumour cells.

    Article  CAS  PubMed  Google Scholar 

  72. Mottok, A., Renné, C., Willenbrock, K., Hansmann, M. L. & Bräuninger, A. Somatic hypermutation of SOCS1 in lymphocyte-predominant Hodgkin lymphoma is accompanied by high JAK2 expression and activation of STAT6. Blood 110, 3387–3390 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Barth, T. F. et al. Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood 101, 3681–3686 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Joos, S. et al. Classical Hodgkin lymphoma is characterized by recurrent copy number gains of the short arm of chromosome 2. Blood 99, 1381–1387 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Martin-Subero, J. I. et al. Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood 99, 1474–1477 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Martin-Subero, J. I. et al. Chromosomal rearrangements involving the BCL3 locus are recurrent in classical Hodgkin and peripheral T-cell lymphoma. Blood 108, 401–402 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Mathas, S. et al. Elevated NF-κB p50 complex formation and Bcl-3 expression in classical Hodgkin, anaplastic large-cell, and other peripheral T-cell lymphomas. Blood 106, 4287–4293 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Cabannes, E., Khan, G., Aillet, F., Jarrett, R. F. & Hay, R. T. Mutations in the IκBα gene in Hodgkin's disease suggest a tumour suppressor role for IκBα. Oncogene 18, 3063–3070 (1999).

    Article  CAS  PubMed  Google Scholar 

  79. Emmerich, F. et al. Overexpression of I kappa B alpha without inhibition of NF-κB activity and mutations in the I kappa B alpha gene in Reed–Sternberg cells. Blood 94, 3129–3134 (1999).

    CAS  PubMed  Google Scholar 

  80. Jungnickel, B. et al. Clonal deleterious mutations in the IκBα gene in the malignant cells in Hodgkin's disease. J. Exp. Med. 191, 395–401 (2000). References 78–80 established somatic mutations in NFKBIA in a fraction of Hodgkin's lymphoma cases as a cause for constitutive NF-κB activity in HRS cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Emmerich, F. et al. Inactivating I kappa B epsilon mutations in Hodgkin/Reed–Sternberg cells. J. Pathol. 201, 413–420 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Baus, D. & Pfitzner, E. Specific function of STAT3, SOCS1, and SOCS3 in the regulation of proliferation and survival of classical Hodgkin lymphoma cells. Int. J. Cancer 118, 1404–1413 (2006).

    Article  CAS  PubMed  Google Scholar 

  83. Kube, D. et al. STAT3 is constitutively activated in Hodgkin cell lines. Blood 98, 762–770 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Skinnider, B. F. et al. Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed–Sternberg cells of Hodgkin lymphoma. Blood 99, 618–626 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Kapp, U. et al. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed–Sternberg cells. J. Exp. Med. 189, 1939–1946 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hinz, M. et al. Nuclear factor κB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J. Exp. Med. 196, 605–617 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lamprecht, B. et al. Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts Treg cells via regulation of MIP-3α. Blood 112, 3339–3347 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Chiu, A. et al. Hodgkin lymphoma cells express TACI and BCMA receptors and generate survival and proliferation signals in response to BAFF and APRIL. Blood 109, 729–739 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fiumara, P. et al. Functional expression of receptor activator of nuclear factor κB in Hodgkin disease cell lines. Blood 98, 2784–2790 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Schwab, U. et al. Production of a monoclonal antibody specific for Hodgkin and Sternberg–Reed cells of Hodgkin's disease and a subset of normal lymphoid cells. Nature 299, 65–67 (1982).

    Article  CAS  PubMed  Google Scholar 

  91. Carbone, A., Gloghini, A., Gruss, H. J. & Pinto, A. CD40 ligand is constitutively expressed in a subset of T cell lymphomas and on the microenvironmental reactive T cells of follicular lymphomas and Hodgkin's disease. Am. J. Pathol. 147, 912–922 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Molin, D. et al. Mast cells express functional CD30 ligand and are the predominant CD30L-positive cells in Hodgkin's disease. Br. J. Haematol. 114, 616–623 (2001).

    Article  CAS  PubMed  Google Scholar 

  93. Pinto, A. et al. Human eosinophils express functional CD30 ligand and stimulate proliferation of a Hodgkin's disease cell line. Blood 88, 3299–3305 (1996).

    CAS  PubMed  Google Scholar 

  94. Hirsch, B. et al. CD30-induced signaling is absent in Hodgkin's cells but present in anaplastic large cell lymphoma cells. Am. J. Pathol. 172, 510–520 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Horie, R. et al. Ligand-independent signaling by overexpressed CD30 drives NF-κB activation in Hodgkin–Reed–Sternberg cells. Oncogene 21, 2493–2503 (2002).

    Article  CAS  PubMed  Google Scholar 

  96. Nishikori, M., Ohno, H., Haga, H. & Uchiyama, T. Stimulation of CD30 in anaplastic large cell lymphoma leads to production of nuclear factor-κB p52, which is associated with hyperphosphorylated Bcl-3. Cancer Sci. 96, 487–497 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Schwaller, J. et al. Paracrine promotion of tumor development by the TNF ligand APRIL in Hodgkin's disease. Leukemia 21, 1324–1327 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Cheng, P. et al. Notch-1 regulates NF-κB activity in hemopoietic progenitor cells. J. Immunol. 167, 4458–4467 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Rodig, S. J. et al. TRAF1 expression and c-Rel activation are useful adjuncts in distinguishing classical Hodgkin lymphoma from a subset of morphologically or immunophenotypically similar lymphomas. Am. J. Surg. Pathol. 29, 196–203 (2005).

    Article  PubMed  Google Scholar 

  100. Dutton, A., Reynolds, G. M., Dawson, C. W., Young, L. S. & Murray, P. G. Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin's lymphoma cells through a mechanism involving Akt kinase and mTOR. J. Pathol. 205, 498–506 (2005).

    Article  CAS  PubMed  Google Scholar 

  101. Georgakis, G. V. et al. Inhibition of the phosphatidylinositol-3 kinase/Akt promotes G1 cell cycle arrest and apoptosis in Hodgkin lymphoma. Br. J. Haematol. 132, 503–511 (2006).

    CAS  PubMed  Google Scholar 

  102. Mathas, S. et al. Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappa B. EMBO J. 21, 4104–4113 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Nagel, S. et al. Comprehensive analysis of homeobox genes in Hodgkin lymphoma cell lines identifies dysregulated expression of HOXB9 mediated via ERK5 signaling and BMI1. Blood 109, 3015–3023 (2007).

    CAS  PubMed  Google Scholar 

  104. Renné, C., Willenbrock, K., Küppers, R., Hansmann, M.-L. & Bräuninger, A. Autocrine and paracrine activated receptor tyrosine kinases in classical Hodgkin lymphoma. Blood 105, 4051–4059 (2005).

    Article  PubMed  CAS  Google Scholar 

  105. Zheng, B. et al. MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood 102, 1019–1027 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Juszczynski, P. et al. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc. Natl Acad. Sci. USA 104, 13134–13139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Watanabe, M. et al. AP-1 mediated relief of repressive activity of the CD30 promoter microsatellite in Hodgkin and Reed–Sternberg cells. Am. J. Pathol. 163, 633–641 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Renné, C. et al. High expression of several tyrosine kinases and activation of the PI3K/AKT pathway in mediastinal large B cell lymphoma reveals further similarities to Hodgkin lymphoma. Leukemia 21, 780–787 (2007).

    Article  PubMed  CAS  Google Scholar 

  109. Schmitz, R., Stanelle, J., Hansmann, M.-L. & Küppers, R. Pathogenesis of classical and lymphocyte-predominant Hodgkin lymphoma. Annu. Rev. Pathol. (in the press).

  110. Anagnostopoulos, I. et al. European Task Force on Lymphoma project on lymphocyte predominance Hodgkin disease: histologic and immunohistologic analysis of submitted cases reveals 2 types of Hodgkin disease with a nodular growth pattern and abundant lymphocytes. Blood 96, 1889–1899 (2000).

    CAS  PubMed  Google Scholar 

  111. Chang, K. C., Khen, N. T., Jones, D. & Su, I. J. Epstein–Barr virus is associated with all histological subtypes of Hodgkin lymphoma in Vietnamese children with special emphasis on the entity of lymphocyte predominance subtype. Hum. Pathol. 36, 747–755 (2005).

    Article  PubMed  Google Scholar 

  112. Dolcetti, R., Boiocchi, M., Gloghini, A. & Carbone, A. Pathogenetic and histogenetic features of HIV-associated Hodgkin's disease. Eur. J. Cancer 37, 1276–1287 (2001).

    Article  CAS  PubMed  Google Scholar 

  113. Kutok, J. L. & Wang, F. Spectrum of Epstein–Barr virus-associated diseases. Annu. Rev. Pathol. 1, 375–404 (2006).

    Article  CAS  PubMed  Google Scholar 

  114. Baumforth, K. R. et al. Expression of the Epstein–Barr virus-encoded Epstein–Barr virus nuclear antigen 1 in Hodgkin's lymphoma cells mediates up-regulation of CCL20 and the migration of regulatory T cells. Am. J. Pathol. 173, 195–204 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Flavell, J. R. et al. Down-regulation of the TGF-β target gene, PTPRK, by the Epstein–Barr virus encoded EBNA1 contributes to the growth and survival of Hodgkin lymphoma cells. Blood 111, 292–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Kulwichit, W. et al. Expression of the Epstein–Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc. Natl Acad. Sci. USA 95, 11963–11968 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kilger, E., Kieser, A., Baumann, M. & Hammerschmidt, W. Epstein–Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J. 17, 1700–1709 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Young, L. S. & Murray, P. G. Epstein–Barr virus and oncogenesis: from latent genes to tumours. Oncogene 22, 5108–5121 (2003).

    Article  CAS  PubMed  Google Scholar 

  119. Alber, G. et al. Molecular mimicry of the antigen receptor signalling motif by transmembrane proteins of the Epstein–Barr virus and the bovine leukemia virus. Curr. Biol. 3, 333–339 (1993).

    Article  CAS  PubMed  Google Scholar 

  120. Caldwell, R. G., Wilson, J. B., Anderson, S. J. & Longnecker, R. Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity 9, 405–411 (1998).

    Article  CAS  PubMed  Google Scholar 

  121. Liu, Y. J. et al. Mechanism of antigen-driven selection in germinal centres. Nature 342, 929–931 (1989).

    Article  CAS  PubMed  Google Scholar 

  122. Portis, T., Dyck, P. & Longnecker, R. Epstein–Barr Virus (EBV) LMP2A induces alterations in gene transcription similar to those observed in Reed–Sternberg cells of Hodgkin lymphoma. Blood 102, 4166–4178 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Vockerodt, M. et al. The Epstein–Barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre B cells towards a Hodgkin's Reed–Sternberg-like phenotype. J. Pathol. 216, 83–92 (2008).

    Article  CAS  PubMed  Google Scholar 

  124. Renné, C. et al. The aberrant coexpression of several receptor tyrosine kinases is largely restricted to EBV-negative cases of classical Hodgkin's lymphoma. Int. J. Cancer 120, 2504–2509 (2007).

    Article  PubMed  CAS  Google Scholar 

  125. Bechtel, D., Kurth, J., Unkel, C. & Küppers, R. Transformation of BCR-deficient germinal-center B cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood 106, 4345–4350 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Mancao, C., Altmann, M., Jungnickel, B. & Hammerschmidt, W. Rescue of “crippled” germinal center B cells from apoptosis by Epstein–Barr virus. Blood 106, 4339–4344 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chaganti, S. et al. Epstein–Barr virus infection in vitro can resue germinal centre B cells with inactivated immunoglobulin genes. Blood 106, 4249–4252 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Mancao, C. & Hammerschmidt, W. Epstein–Barr virus latent membrane protein 2A is a B-cell receptor mimic and essential for B-cell survival. Blood 110, 3715–3721 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bräuninger, A. et al. Molecular biology of Hodgkin and Reed/Sternberg cells in Hodgkin's lymphoma. Int. J. Cancer 118, 1853–1861 (2006).

    Article  PubMed  CAS  Google Scholar 

  130. Ward, R. J. & Dirks, P. B. Cancer stem cells: at the headwaters of tumor development. Annu. Rev. Pathol. 2, 175–189 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Drexler, H. G., Gignac, S. M., Hoffbrand, A. V. & Minowada, J. Formation of multinucleated cells in a Hodgkin's-disease-derived cell line. Int. J. Cancer 43, 1083–1090 (1989).

    Article  CAS  PubMed  Google Scholar 

  132. Newcom, S. R., Kadin, M. E. & Phillips, C. L-428 Reed–Sternberg cells and mononuclear Hodgkin's cells arise from a single cloned mononuclear cell. Int. J. Cell Cloning 6, 417–431 (1988).

    Article  CAS  PubMed  Google Scholar 

  133. Jansen, M. P. et al. Morphologically normal, CD30-negative B-lymphocytes with chromosome aberrations in classical Hodgkin's disease: the progenitor cell of the malignant clone? J. Pathol. 189, 527–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Barrios, L. et al. Chromosome abnormalities in peripheral blood lymphocytes from untreated Hodgkin's patients. A possible evidence for chromosome instability. Hum. Genet. 78, 320–324 (1988).

    Article  CAS  PubMed  Google Scholar 

  135. M'Kacher, R. et al. Baseline and treatment-induced chromosomal abnormalities in peripheral blood lymphocytes of Hodgkin's lymphoma patients. Int. J. Radiat. Oncol. Biol. Phys. 57, 321–326 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Spieker, T. et al. Molecular single-cell analysis of the clonal relationship of small Epstein–Barr virus-infected cells and Epstein–Barr virus-harboring Hodgkin and Reed/Sternberg cells in Hodgkin disease. Blood 96, 3133–3138 (2000).

    CAS  PubMed  Google Scholar 

  137. Skinnider, B. F. & Mak, T. W. The role of cytokines in classical Hodgkin lymphoma. Blood 99, 4283–4297 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Aldinucci, D. et al. Expression of CCR5 receptors on Reed–Sternberg cells and Hodgkin lymphoma cell lines: involvement of CCL5/Rantes in tumor cell growth and microenvironmental interactions. Int. J. Cancer 122, 769–776 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Fischer, M. et al. Expression of CCL5/RANTES by Hodgkin and Reed–Sternberg cells and its possible role in the recruitment of mast cells into lymphomatous tissue. Int. J. Cancer 107, 197–201 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Kapp, U. et al. Disseminated growth of Hodgkin's-derived cell lines L540 and L540cy in immune-deficient SCID mice. Ann. Oncol. 5 (Suppl. 1), 121–126 (1994).

    Article  PubMed  Google Scholar 

  141. Biggar, R. J. et al. Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS. Blood 108, 3786–3791 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Aldinucci, D. & Gattei, V. Interleukin-3 receptors in Hodgkin's disease. Am. J. Pathol. 162, 356–357 (2003).

    Google Scholar 

  143. Aldinucci, D. et al. Expression of functional interleukin-3 receptors on Hodgkin and Reed–Sternberg cells. Am. J. Pathol. 160, 585–596 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Aldinucci, D., Lorenzon, D., Olivo, K., Rapana, B. & Gattei, V. Interactions between tissue fibroblasts in lymph nodes and Hodgkin/Reed–Sternberg cells. Leuk. Lymphoma 45, 1731–1739 (2004).

    Article  CAS  PubMed  Google Scholar 

  145. Jundt, F. et al. Hodgkin/Reed–Sternberg cells induce fibroblasts to secrete eotaxin, a potent chemoattractant for T cells and eosinophils. Blood 94, 2065–2071 (1999).

    CAS  PubMed  Google Scholar 

  146. Gandhi, M. K. et al. Expression of LAG-3 by tumor-infiltrating lymphocytes is coincident with the suppression of latent membrane antigen-specific CD8+ T-cell function in Hodgkin lymphoma patients. Blood 108, 2280–2289 (2006). References 106 and 146 showed that secretion of galectin 1 by HRS cells is involved in the suppression of cytotoxic T-cell responses against the HRS cells.

    Article  CAS  PubMed  Google Scholar 

  147. Marshall, N. A. et al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood 103, 1755–1762 (2004). This article established that regulatory T cells are frequently found in the Hodgkin's lymphoma microenvironment.

    Article  CAS  PubMed  Google Scholar 

  148. Tanijiri, T. et al. Hodgkin's Reed–Sternberg cell line (KM-H2) promotes a bidirectional differentiation of CD4+CD25+Foxp3+ T cells and CD4+ cytotoxic T lymphocytes from CD4+ naive T cells. J. Leukoc. Biol. 82, 576–584 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Alvaro, T. et al. Outcome in Hodgkin's lymphoma can be predicted from the presence of accompanying cytotoxic and regulatory T cells. Clin. Cancer Res. 11, 1467–1473 (2005).

    Article  PubMed  Google Scholar 

  150. Kelley, T. W., Pohlman, B., Elson, P. & Hsi, E. D. The ratio of FOXP3+ regulatory T cells to granzyme B+ cytotoxic T/NK cells predicts prognosis in classical Hodgkin lymphoma and is independent of bcl-2 and MAL expression. Am. J. Clin. Pathol. 128, 958–965 (2007).

    Article  PubMed  Google Scholar 

  151. Tan, T. T. & Coussens, L. M. Humoral immunity, inflammation and cancer. Curr. Opin. Immunol. 19, 209–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  152. Gandhi, M. K. et al. Galectin-1 mediated suppression of Epstein–Barr virus specific T-cell immunity in classic Hodgkin lymphoma. Blood 110, 1326–1329 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Newcom, S. R. & Gu, L. Transforming growth factor β 1 messenger RNA in Reed–Sternberg cells in nodular sclerosing Hodgkin's disease. J. Clin. Pathol. 48, 160–163 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Chemnitz, J. M. et al. Prostaglandin E2 impairs CD4+ T cell activation by inhibition of lck: implications in Hodgkin's lymphoma. Cancer Res. 66, 1114–1122 (2006).

    Article  CAS  PubMed  Google Scholar 

  155. Chemnitz, J. M. et al. RNA fingerprints provide direct evidence for the inhibitory role of TGFβ and PD-1 on CD4+ T cells in Hodgkin lymphoma. Blood 110, 3226–3233 (2007).

    Article  CAS  PubMed  Google Scholar 

  156. Yamamoto, R. et al. PD-1–PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 111, 3220–3224 (2008).

    Article  CAS  PubMed  Google Scholar 

  157. Hjalgrim, H. et al. Infectious mononucleosis, childhood social environment, and risk of Hodgkin lymphoma. Cancer Res. 67, 2382–2388 (2007).

    Article  CAS  PubMed  Google Scholar 

  158. Kurth, J., Hansmann, M.-L., Rajewsky, K. & Küppers, R. Epstein–Barr virus-infected B cells expanding in germinal centers of infectious mononucleosis patients do not participate in the germinal center reaction. Proc. Natl Acad. Sci. USA 100, 4730–4735 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kurth, J. et al. EBV-infected B cells in infectious mononucleosis: viral strategies for spreading in the B cell compartment and establishing latency. Immunity 13, 485–495 (2000).

    Article  CAS  PubMed  Google Scholar 

  160. Buglio, D. et al. Vorinostat inhibits STAT6-mediated TH2 cytokine and TARC production and induces cell death in Hodgkin lymphoma cell lines. Blood 112, 1424–1433 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Hartmann, S. et al. Detection of genomic imbalances in microdissected Hodgkin and Reed–Sternberg cells of classical Hodgkin's lymphoma by array-based comparative genomic hybridization. Haematologica 93, 1318–1326 (2008).

    Article  CAS  PubMed  Google Scholar 

  162. Gutensohn, N. & Cole, P. Epidemiology of Hodgkin's disease. Semin. Oncol. 7, 92–102 (1980).

    CAS  PubMed  Google Scholar 

  163. Kluiver, J. et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol. 207, 243–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Nie, K. et al. MicroRNA-mediated down-regulation of PRDM1/Blimp-1 in Hodgkin/Reed–Sternberg cells: a potential pathogenetic lesion in Hodgkin lymphomas. Am. J. Pathol. 173, 242–252 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful to the Deutsche Forschungsgemeinschaft, the Deutsche Krebshilfe, the Wilhelm Sander Stiftung, and the Deutsche José Carreras Leukämie-Stiftung for generous support. I thank M.-L. Hansmann and all members of the group for many stimulating discussions. I apologize to all colleagues whose work could not be cited owing to space restrictions.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

OMIM

Hodgkin's lymphoma

FURTHER INFORMATION

R. Küppers' homepage

Glossary

Plasma cell

A terminally differentiated B cell that is specialized for the secretion of antibodies.

Class switching

The somatic recombination process by which immunoglobulin isotypes are switched from IgM to IgG, IgA or IgE.

LMP1

(Latent membrane protein 1). An EBV-encoded protein that activates NF-κB and other factors.

LMP2A

(Latent membrane protein 2A). An EBV-encoded protein that mimics a B-cell receptor.

Endomitosis

Chromosomal replication without cell division.

Rosetting T cells

A phenomenon in which CD4+ T cells surround HRS cells in a rosette pattern.

TH1 response

A T-helper-1-cell-mediated immune response is mediated by pro-inflammatory cytokines such as IFNγ, IL-1β and TNFα. It promotes cellular immune responses against intracellular infections and malignancy.

TH2 response

A T-helper-2-cell-mediated immune response involves the production of cytokines, such as IL-4, that stimulate antibody production. TH2 cytokines promote secretory immune responses of mucosal surfaces to extracellular pathogens and allergic reactions.

Infectious mononucleosis

A self-limiting disease usually caused by a delayed primary infection with EBV in adolescents or adults.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Küppers, R. The biology of Hodgkin's lymphoma. Nat Rev Cancer 9, 15–27 (2009). https://doi.org/10.1038/nrc2542

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2542

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing