Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer

Key Points

  • Targeted protein proteolysis of key regulatory proteins by the ubiquitin–proteasome system (UPS) has a central role in maintaining and regulating growth. As such, components of the UPS can promote or prevent cellular transformation, which results from an aberrant response to otherwise normal cues that regulate processes involved in proliferation, differentiation and apoptosis.

  • The SCF (SKP1–CUL1–F-box protein) ubiquitin ligases are the best characterized mammalian cullin RING ubiquitin ligases, and the F-box protein provides the substrate targeting specificity of the complex.

  • Out of sixty-nine F-box proteins that have been identified in humans, only nine have been matched with their respective substrates. The F-box proteins SKP2 (S-phase kinase-associated protein 2) and β-TrCP (β-transducin repeat-containing protein) have emerged as key regulatory molecules with roles in cellular processes that are intimately related to tumorigenesis.

  • SKP2 is an oncogenic protein that targets tumour suppressor proteins for degradation. As a positive regulator of cell cycle progression, a major target of SKP2 is the cyclin-dependent kinase (CDK) inhibitor p27, as has been shown in vivo and in vitro. Increased levels of SKP2 and reduced levels of p27 are observed in many types of cancer, and these levels are in several cases used as independent prognostic markers.

  • Whereas β-TrCP has been previously suggested to possess both oncogenic and tumour suppressive characteristics — mainly owing to the diversity in β-TrCP substrates — recent evidence indicates β-TrCP is mainly oncogenic.

  • Previous attempts at targeting components of the degradation machinery have been successful for laboratory and clinical use, as observed in the effectiveness of the proteasome inhibitor bortezomib (Velcade) in multiple myeloma. The development of pharmaceutical compounds targeting specific SCF ubiquitin ligases is timely and is complemented by structural and basic biochemical studies that have identified substrates for important cellular regulators such as SKP2 and β-TrCP.

Abstract

The maintenance and preservation of distinct phases during the cell cycle is a highly complex and coordinated process. It is regulated by phosphorylation — through the activity of cyclin-dependent kinases (CDKs) — and protein degradation, which occurs through ubiquitin ligases such as SCF (SKP1–CUL1–F-box protein) complexes and APC/C (anaphase-promoting complex/cyclosome). Here, we explore the functionality and biology of the F-box proteins, SKP2 (S-phase kinase-associated protein 2) and β-TrCP (β-transducin repeat-containing protein), which are emerging as important players in cancer biogenesis owing to the deregulated proteolysis of their substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The UPS controls the cell cycle.

Similar content being viewed by others

References

  1. Hershko, A. The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle (Nobel lecture). Angew. Chem. Int. Ed. Engl. 44, 5932–5943 (2005). An historical perspective about the discovery of the ubiquitin system that describes how E1, E2 and E3 enzymes work together to promote ubiquitin ligation to substrates.

    Article  CAS  PubMed  Google Scholar 

  2. Petroski, M. D. & Deshaies, R. J. Function and regulation of cullin-RING ubiquitin ligases. Nature Rev. Mol. Cell Biol. 6, 9–20 (2005). An excellent review of cullin RING ubiquitin ligases.

    Article  CAS  Google Scholar 

  3. Cardozo, T. & Pagano, M. The SCF ubiquitin ligase: insights into a molecular machine. Nature Rev. Mol. Cell Biol. 5, 739–751 (2004).

    Article  CAS  Google Scholar 

  4. Jin, J. et al. Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18, 2573–2580 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cenciarelli, C. et al. Identification of a family of human F-box proteins. Curr. Biol. 9, 1177–1179 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Winston, J. T., Koepp, D. M., Zhu, C., Elledge, S. J. & Harper, J. W. A family of mammalian F-box proteins. Curr. Biol. 9, 1180–1182 (1999). References 4–6 classify the mammalian family of F-box proteins.

    Article  CAS  PubMed  Google Scholar 

  7. Welcker, M. & Clurman, B. E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Rev. Cancer 8, 83–93 (2007). An excellent and up-to-date review about FBXW7 and its role in cancer.

    Article  CAS  Google Scholar 

  8. Malumbres, M. & Barbacid, M. Cell cycle kinases in cancer. Curr. Opin. Genet. Dev. 17, 60–65 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Guardavaccaro, D. & Pagano, M. Stabilizers and destabilizers controlling cell cycle oscillators. Mol. Cell 22, 1–4 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Branzei, D. & Foiani, M. Regulation of DNA repair throughout the cell cycle. Nature Rev. Mol. Cell Biol. 9, 297–308 (2008).

    Article  CAS  Google Scholar 

  11. Zhang, H., Kobayashi, R., Galaktionov, K. & Beach, D. p19Skp1 and p45Skp2 are essential elements of the cyclin A–CDK2 S phase kinase. Cell 82, 915–925 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Carrano, A. C., Eytan, E., Hershko, A. & Pagano, M. SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biol. 1, 193–199 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Sutterluty, H. et al. p45SKP2 promotes p27Kip1 degradation and induces S phase in quiescent cells. Nature Cell Biol. 1, 207–214 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Tsvetkov, L. M., Yeh, K. H., Lee, S. J., Sun, H. & Zhang, H. p27Kip1 ubiquitination and degradation is regulated by the SCFSkp2 complex through phosphorylated Thr187 in p27. Curr. Biol. 9, 661–664 (1999). References 12–14 characterize the function of SKP2 in cell cycle control and the ubiquitin-mediated degradation of the tumour suppressor p27.

    Article  CAS  PubMed  Google Scholar 

  15. Spruck, C. et al. A CDK-independent function of mammalian Cks1: targeting of SCFSkp2 to the CDK inhibitor p27Kip1. Mol. Cell 7, 639–650 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Ganoth, D. et al. The cell-cycle regulatory protein Cks1 is required for SCFSkp2-mediated ubiquitinylation of p27. Nature Cell Biol. 3, 321–324 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Bloom, J. & Pagano, M. Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin. Cancer Biol. 13, 41–47 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Nakayama, K. et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27Kip1, polyploidy and centrosome overduplication. EMBO J. 19, 2069–2081 (2000). Shows that deletion of SKP2 results in accumulation of p27 in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nakayama, K. et al. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev. Cell 6, 661–672 (2004). Shows that p27 loss reverts most of the phenotypes that are due to SKP2-deficiency and that the SKP2–p27 axis functions not only at G1–S, but also at G2–M.

    Article  CAS  PubMed  Google Scholar 

  20. Kossatz, U. et al. Skp2-dependent degradation of p27kip1 is essential for cell cycle progression. Genes Dev. 18, 2602–2607 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bornstein, G. et al. Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S. phase. J. Biol. Chem. 278, 25752–25757 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Yu, Z. K., Gervais, J. L. & Zhang, H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21CIP1/WAF1 and cyclin D proteins. Proc. Natl Acad. Sci. USA 95, 11324–11329 (1998). The first evidence that SKP2 targets p21, a tumour suppressor protein, for degradation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kamura, T. et al. Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation. Proc. Natl Acad. Sci. USA 100, 10231–10236 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hiramatsu, Y. et al. Degradation of Tob1 mediated by SCFSkp2-dependent ubiquitination. Cancer Res. 66, 8477–8483 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Song, M. S. et al. Skp2 regulates the antiproliferative function of the tumor suppressor RASSF1A via ubiquitin-mediated degradation at the G(1)–S transition. Oncogene 10 Dec 2007 (doi:10.1038/sj.onc.1210971).

  26. Tedesco, D., Lukas, J. & Reed, S. I. The pRb-related protein p130 is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCFSkp2. Genes Dev. 16, 2946–2957 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huang, H. et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc. Natl Acad. Sci. USA 102, 1649–1654 (2005). Identifies FOXO1 as a substrate of SKP2 and suggests SKP2-promoted proteolysis might have a role in tumorigenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tokarz, S. et al. The ISG15 isopeptidase UBP43 is regulated by proteolysis via the SCFSkp2 ubiquitin ligase. J. Biol. Chem. 279, 46424–46430 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Garriga, J. et al. CDK9 is constitutively expressed throughout the cell cycle, and its steady-state expression is independent of SKP2. Mol. Cell. Biol. 23, 5165–5173 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kiernan, R. E. et al. Interaction between cyclin T1 and SCFSKP2 targets CDK9 for ubiquitination and degradation by the proteasome. Mol. Cell. Biol. 21, 7956–7970 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Carrano, A. C. & Pagano, M. Role of the F-box protein Skp2 in adhesion-dependent cell cycle progression. J. Cell Biol. 153, 1381–1390 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Signoretti, S. et al. Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. J. Clin. Invest. 110, 633–641 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Waltregny, D. et al. Androgen-driven prostate epithelial cell proliferation and differentiation in vivo involve the regulation of p27. Mol. Endocrinol. 15, 765–782 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Lu, L., Schulz, H. & Wolf, D. A. The F-box protein SKP2 mediates androgen control of p27 stability in LNCaP human prostate cancer cells. BMC Cell Biol. 3, 22 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Latres, E. et al. Role of the F-box protein Skp2 in lymphomagenesis. Proc. Natl Acad. Sci. USA 98, 2515–2520 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kang-Decker, N. et al. Loss of CBP causes T cell lymphomagenesis in synergy with p27Kip1 insufficiency. Cancer Cell 5, 177–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Shim, E. H. et al. Expression of the F-box protein SKP2 induces hyperplasia, dysplasia, and low-grade carcinoma in the mouse prostate. Cancer Res. 63, 1583–1588 (2003).

    CAS  PubMed  Google Scholar 

  38. Radke, S., Pirkmaier, A. & Germain, D. Differential expression of the F-box proteins Skp2 and Skp2B in breast cancer. Oncogene 24, 3448–3458 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Timmerbeul, I. et al. Testing the importance of p27 degradation by the SCFskp2 pathway in murine models of lung and colon cancer. Proc. Natl Acad. Sci. USA 103, 14009–14014 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Keller, U. B. et al. Myc targets Cks1 to provoke the suppression of p27Kip1, proliferation and lymphomagenesis. EMBO J. 26, 2562–2574 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Philipp-Staheli, J., Payne, S. R. & Kemp, C. J. p27Kip1: regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp. Cell Res. 264, 148–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Slotky, M. et al. The expression of the ubiquitin ligase subunit Cks1 in human breast cancer. Breast Cancer Res. 7, R737–R744 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shapira, M. et al. The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer 103, 1336–1346 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Shapira, M. et al. Alterations in the expression of the cell cycle regulatory protein cyclin kinase subunit 1 in colorectal carcinoma. Cancer 100, 1615–1621 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Masuda, T. A. et al. Cyclin-dependent kinase 1 gene expression is associated with poor prognosis in gastric carcinoma. Clin. Cancer Res. 9, 5693–5698 (2003).

    CAS  PubMed  Google Scholar 

  46. Hershko, D. D. & Shapira, M. Prognostic role of p27Kip1 deregulation in colorectal cancer. Cancer 107, 668–675 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Kamura, T. et al. Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27Kip1 at G1 phase. Nature Cell Biol. 6, 1229–1235 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. Hattori, T. et al. Pirh2 promotes ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor p27Kip1. Cancer Res. 67, 10789–10795 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Goto, T. et al. Mechanism and functional consequences of loss of FOXO1 expression in endometrioid endometrial cancer cells. Oncogene 27, 9–19 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Bellan, C. et al. Missing expression of pRb2/p130 in human retinoblastomas is associated with reduced apoptosis and lesser differentiation. Invest. Ophthalmol. Vis. Sci. 43, 3602–3608 (2002).

    PubMed  Google Scholar 

  51. Caputi, M. et al. Loss of pRb2/p130 expression is associated with unfavorable clinical outcome in lung cancer. Clin. Cancer Res. 8, 3850–3856 (2002).

    CAS  PubMed  Google Scholar 

  52. D'Andrilli, G. et al. Frequent loss of pRb2/p130 in human ovarian carcinoma. Clin. Cancer Res. 10, 3098–3103 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Helin, K. et al. Loss of the retinoblastoma protein-related p130 protein in small cell lung carcinoma. Proc. Natl Acad. Sci. USA 94, 6933–6938 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Scambia, G., Lovergine, S. & Masciullo, V. RB family members as predictive and prognostic factors in human cancer. Oncogene 25, 5302–5308 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Susini, T. et al. Expression of the retinoblastoma-related gene Rb2/p130 correlates with clinical outcome in endometrial cancer. J. Clin. Oncol. 16, 1085–1093 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Zamparelli, A. et al. Expression of cell-cycle-associated proteins pRB2/p130 and p27kip in vulvar squamous cell carcinomas. Hum. Pathol. 32, 4–9 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Soldatenkov, V. A., Dritschilo, A., Ronai, Z. & Fuchs, S. Y. Inhibition of homologue of Slimb (HOS) function sensitizes human melanoma cells for apoptosis. Cancer Res. 59, 5085–5088 (1999).

    CAS  PubMed  Google Scholar 

  58. Busino, L. et al. Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage. Nature 426, 87–91 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Tang, W. et al. Targeting β-transducin repeat-containing protein E3 ubiquitin ligase augments the effects of antitumor drugs on breast cancer cells. Cancer Res. 65, 1904–1908 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Guardavaccaro, D. et al. Control of meiotic and mitotic progression by the F box protein β-Trcp1 in vivo. Dev. Cell 4, 799–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Nakayama, K. et al. Impaired degradation of inhibitory subunit of NF-κB (IκB) and β-catenin as a result of targeted disruption of the β-TrCP1 gene. Proc. Natl Acad. Sci. USA 100, 8752–8757 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mailand, N., Bekker-Jensen, S., Bartek, J. & Lukas, J. Destruction of Claspin by SCFβTrCP restrains Chk1 activation and facilitates recovery from genotoxic stress. Mol. Cell 23, 307–318 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Peschiaroli, A. et al. SCFβTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol. Cell 23, 319–329 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Watanabe, N. et al. M-phase kinases induce phospho-dependent ubiquitination of somatic Wee1 by SCFβ-TrCP. Proc. Natl Acad. Sci. USA 101, 4419–4424 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ougolkov, A. et al. Associations among β-TrCP, an E3 ubiquitin ligase receptor, β-catenin, and NF-κB in colorectal cancer. J. Natl Cancer Inst. 96, 1161–1170 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Muerkoster, S. et al. Increased expression of the E3-ubiquitin ligase receptor subunit βTRCP1 relates to constitutive nuclear factor-κB activation and chemoresistance in pancreatic carcinoma cells. Cancer Res. 65, 1316–1324 (2005).

    Article  PubMed  Google Scholar 

  67. Koch, A. et al. Elevated expression of Wnt antagonists is a common event in hepatoblastomas. Clin. Cancer Res. 11, 4295–4304 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Spiegelman, V. S. et al. Induction of homologue of Slimb ubiquitin ligase receptor by mitogen signaling. J. Biol. Chem. 277, 36624–36630 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Kudo, Y. et al. Role of F-box protein βTrcp1 in mammary gland development and tumorigenesis. Mol. Cell. Biol. 24, 8184–8194 (2004). Shows that β-TrCP1 positively controls the proliferation of breast epithelium and its overexpression induces transformation in the breast epithelium.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Karin, M. & Greten, F. R. NF-κB: linking inflammation and immunity to cancer development and progression. Nature Rev. Immunol. 5, 749–759 (2005).

    Article  CAS  Google Scholar 

  71. Wu, C. & Ghosh, S. β-TrCP mediates the signal-induced ubiquitination of IκBβ. J. Biol. Chem. 274, 29591–29594 (1999).

    Article  CAS  PubMed  Google Scholar 

  72. Shirane, M., Hatakeyama, S., Hattori, K., Nakayama, K. & Nakayama, K. Common pathway for the ubiquitination of IκBα, IκBβ, and IκBε mediated by the F-box protein FWD1. J. Biol. Chem. 274, 28169–28174 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Tan, P. et al. Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of IκBα. Mol. Cell 3, 527–533 (1999). One of the first papers showing that the SCF contains the RING-finger protein RBX1 and that an SCF containing β-TrCP targets IκBα for degradation.

    Article  CAS  PubMed  Google Scholar 

  74. Kroll, M. et al. Inducible degradation of IkBa by the proteasome requires interaction with the F-box protein h-βTrCP. J. Biol. Chem. 274, 7941–7945 (1999).

    Article  CAS  PubMed  Google Scholar 

  75. Spencer, E., Jiang, J. & Chen, Z. J. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev. 13, 284–294 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Winston, J. T. et al. The SCFβ-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13, 270–283 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yaron, A. et al. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396, 590–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Hatakeyama, S. et al. Ubiquitin-dependent degradation of IκBα a is mediated by a ubiquitin ligase Skp1/Cul1/F-box protein FWD1. Proc. Natl Acad. Sci. USA 96, 3859–3863 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Arsura, M. & Cavin, L. G. Nuclear factor-κB and liver carcinogenesis. Cancer Lett. 229, 157–169 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Pikarsky, E. et al. NF-κB functions as a tumour promoter in inflammation-associated cancer. Nature 431, 461–466 (2004).

    Article  CAS  PubMed  Google Scholar 

  81. Dhawan, P. & Richmond, A. A novel NF-κB-inducing kinase-MAPK signaling pathway up-regulates NF-κB activity in melanoma cells. J. Biol. Chem. 277, 7920–7928 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Liu, J. et al. Oncogenic BRAF regulates β-Trcp expression and NF-κB activity in human melanoma cells. Oncogene 26, 1954–1958 (2007).

    Article  CAS  PubMed  Google Scholar 

  83. Yang, H. S. et al. The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol. Cell. Biol. 23, 26–37 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Dorrello, N. V. et al. S6K1- and βTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314, 467–471 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Afonja, O., Juste, D., Das, S., Matsuhashi, S. & Samuels, H. H. Induction of PDCD4 tumor suppressor gene expression by RAR agonists, antiestrogen and HER-2/neu antagonist in breast cancer cells. Evidence for a role in apoptosis. Oncogene 23, 8135–8145 (2004).

    Article  CAS  PubMed  Google Scholar 

  86. Goke, R., Barth, P., Schmidt, A., Samans, B. & Lankat-Buttgereit, B. Programmed cell death protein 4 suppresses CDK1/cdc2 via induction of p21Waf1/Cip1. Am. J. Physiol. Cell Physiol. 287, C1541–C1546 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. Wen, Y. H. et al. Alterations in the expression of PDCD4 in ductal carcinoma of the breast. Oncol. Rep. 18, 1387–1393 (2007).

    CAS  PubMed  Google Scholar 

  88. Zhang, H. et al. Involvement of programmed cell death 4 in transforming growth factor-β1-induced apoptosis in human hepatocellular carcinoma. Oncogene 25, 6101–6112 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Mudduluru, G. et al. Loss of programmed cell death 4 expression marks adenoma-carcinoma transition, correlates inversely with phosphorylated protein kinase B, and is an independent prognostic factor in resected colorectal cancer. Cancer 110, 1697–1707 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Chen, Y. et al. Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis. J. Pathol. 200, 640–646 (2003).

    Article  CAS  PubMed  Google Scholar 

  91. Majumder, S. REST in good times and bad: roles in tumor suppressor and oncogenic activities. Cell Cycle 5, 1929–1935 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Westbrook, T. F. et al. A genetic screen for candidate tumor suppressors identifies REST. Cell 121, 837–848 (2005).

    Article  CAS  PubMed  Google Scholar 

  93. Westbrook, T. F. et al. SCFβ-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 452, 370–374 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Saitoh, T. & Katoh, M. Expression profiles of βTRCP1 and βTRCP2, and mutation analysis of βTRCP2 in gastric cancer. Int. J. Oncol. 18, 959–964 (2001).

    CAS  PubMed  Google Scholar 

  95. Kim, C. J. et al. Somatic mutations of the β-TrCP gene in gastric cancer. Apmis 115, 127–133 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Gerstein, A. V. et al. APC/CTNNB1 (β-catenin) pathway alterations in human prostate cancers. Genes Chromosomes Cancer 34, 9–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  97. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Liu, C. et al. β-Trcp couples β-catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc. Natl Acad. Sci. USA 96, 6273–6278 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kitagawa, M. et al. An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of β-catenin. EMBO J. 18, 2401–2410 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lagna, G., Carnevali, F., Marchioni, M. & Hemmati-Brivanlou, A. Negative regulation of axis formation and Wnt signaling in Xenopus embryos by the F-box/WD40 protein βTrCP. Mech. Dev. 80, 101–106 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Hart, M. et al. The F-box protein β-TrCP associates with phosphorylated β-catenin and regulates its activity in the cell. Curr. Biol. 9, 207–210 (1999).

    Article  CAS  PubMed  Google Scholar 

  103. Latres, E., Chiaur, D. S. & Pagano, M. The human F box protein β-Trcp associates with the Cul1/Skp1 complex and regulates the stability of β-catenin. Oncogene 18, 849–854 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Marikawa, Y. & Elinson, R. P. β-TrCP is a negative regulator of Wnt/β-catenin signaling pathway and dorsal axis formation in Xenopus embryos. Mech. Dev. 77, 75–80 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Li, Y. et al. Stabilization of prolactin receptor in breast cancer cells. Oncogene 25, 1896–1902 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Guardavaccaro, D. et al. Control of chromosome stability by the β-TrCP–REST–Mad2 axis. Nature 452, 365–369 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fuller, G. N. et al. Many human medulloblastoma tumors overexpress repressor element-1 silencing transcription (REST)/neuron-restrictive silencer factor, which can be functionally countered by REST-VP16. Mol. Cancer Ther. 4, 343–349 (2005).

    CAS  PubMed  Google Scholar 

  108. Su, X., Kameoka, S., Lentz, S. & Majumder, S. Activation of REST/NRSF target genes in neural stem cells is sufficient to cause neuronal differentiation. Mol. Cell. Biol. 24, 8018–8025 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Lawinger, P. et al. The neuronal repressor REST/NRSF is an essential regulator in medulloblastoma cells. Nature Med. 6, 826–831 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Kanemori, Y., Uto, K. & Sagata, N. β-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. Proc. Natl Acad. Sci. USA 102, 6279–6284 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Boutros, R., Lobjois, V. & Ducommun, B. CDC25 phosphatases in cancer cells: key players? Good targets? Nature Rev. Cancer 7, 495–507 (2007).

    Article  CAS  Google Scholar 

  112. Cangi, M. G. et al. Role of the Cdc25A phosphatase in human breast cancer. J. Clin. Invest. 106, 753–761 (2000).

    Article  CAS  Google Scholar 

  113. Kristjansdottir, K. & Rudolph, J. Cdc25 phosphatases and cancer. Chem. Biol. 11, 1043–1051 (2004).

    Article  CAS  PubMed  Google Scholar 

  114. Hernandez, S. et al. Cdc25 cell cycle-activating phosphatases and c-myc expression in human non-Hodgkin's lymphomas. Cancer Res. 58, 1762–1767 (1998).

    CAS  PubMed  Google Scholar 

  115. Hernandez, S. et al. Cdc25a and the splicing variant cdc25b2, but not cdc25B1, -B3 or -C, are over-expressed in aggressive human non-Hodgkin's lymphomas. Int. J. Cancer 89, 148–152 (2000).

    Article  CAS  PubMed  Google Scholar 

  116. Ito, Y. et al. Cdc25A and cdc25B expression in malignant lymphoma of the thyroid: correlation with histological subtypes and cell proliferation. Int. J. Mol. Med. 13, 431–435 (2004).

    CAS  PubMed  Google Scholar 

  117. Loffler, H. et al. Distinct modes of deregulation of the proto-oncogenic Cdc25A phosphatase in human breast cancer cell lines. Oncogene 22, 8063–8071 (2003).

    Article  PubMed  CAS  Google Scholar 

  118. Hsu, J. Y., Reimann, J. D., Sorensen, C. S., Lukas, J. & Jackson, P. K. E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APCCdh1. Nature Cell Biol. 4, 358–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Gutgemann, I., Lehman, N. L., Jackson, P. K. & Longacre, T. A. Emi1 protein accumulation implicates misregulation of the anaphase promoting complex/cyclosome pathway in ovarian clear cell carcinoma. Mod. Pathol. 21, 445–454 (2008).

    Article  PubMed  CAS  Google Scholar 

  120. Lehman, N. L. et al. Oncogenic regulators and substrates of the anaphase promoting complex/cyclosome are frequently overexpressed in malignant tumors. Am. J. Pathol. 170, 1793–1805 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Adams, J. & Kauffman, M. Development of the proteasome inhibitor Velcade (Bortezomib). Cancer Invest. 22, 304–311 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Busino, L. et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900–904 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Gallego, M. & Virshup, D. M. Post-translational modifications regulate the ticking of the circadian clock. Nature Rev. Mol. Cell Biol. 8, 139–148 (2007).

    Article  CAS  Google Scholar 

  124. Frescas, D., Guardavaccaro, D., Bassermann, F., Koyama-Nasu, R. & Pagano, M. JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature 450, 309–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  125. Bassermann, F. et al. NIPA defines an SCF-type mammalian E3 ligase that regulates mitotic entry. Cell 122, 45–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  126. Amador, V., Ge, S., Santamaria, P. G., Guardavaccaro, D. & Pagano, M. APC/CCdc20 controls the ubiquitin-mediated degradation of p21 in prometaphase. Mol. Cell 27, 462–473 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Li, X., Zhao, Q., Liao, R., Sun, P. & Wu, X. The SCFSkp2 ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J. Biol. Chem. 278, 30854–30858 (2003).

    Article  CAS  PubMed  Google Scholar 

  128. Mendez, J. et al. Human origin recognition complex large subunit is degraded by ubiquitin-mediated proteolysis after initiation of DNA replication. Mol. Cell 9, 481–491 (2002).

    Article  CAS  PubMed  Google Scholar 

  129. Moro, L., Arbini, A. A., Marra, E. & Greco, M. Up-regulation of Skp2 after prostate cancer cell adhesion to basement membranes results in BRCA2 degradation and cell proliferation. J. Biol. Chem. 281, 22100–22107 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Jiang, H. et al. Ubiquitylation of RAG-2 by Skp2-SCF links destruction of the V(D)J. recombinase to the cell cycle. Mol. Cell 18, 699–709 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Liu, Y. et al. The ETS protein MEF is regulated by phosphorylation-dependent proteolysis via the protein-ubiquitin ligase SCFSkp2. Mol. Cell. Biol. 26, 3114–3123 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu, H., Cheng, E. H. & Hsieh, J. J. Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev. 21, 2385–2398 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Charrasse, S., Carena, I., Brondani, V., Klempnauer, K. H. & Ferrari, S. Degradation of B-Myb by ubiquitin-mediated proteolysis: involvement of the Cdc34-SCFp45Skp2 pathway. Oncogene 19, 2986–2995 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. von der Lehr, N., Johansson, S. & Larsson, L. G. Implication of the ubiquitin/proteasome system in Myc-regulated transcription. Cell Cycle 2, 403–407 (2003).

    CAS  PubMed  Google Scholar 

  135. von der Lehr, N. et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189–1200 (2003).

    Article  CAS  PubMed  Google Scholar 

  136. Marti, A., Wirbelauer, C., Scheffner, M. & Krek, W. Interaction between ubiquitin-protein ligase SCFSKP2 and E2F-1 underlies the regulation of E2F-1 degradation. Nature Cell Biol. 1, 14–19 (1999).

    Article  CAS  PubMed  Google Scholar 

  137. Oh, K. J. et al. The papillomavirus E7 oncoprotein is ubiquitinated by UbcH7 and Cullin 1- and Skp2-containing E3 ligase. J. Virol. 78, 5338–5346 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lin, Y. W. & Yang, J. L. Cooperation of ERK and SCFSkp2 for MKP-1 destruction provides a positive feedback regulation of proliferating signaling. J. Biol. Chem. 281, 915–926 (2006).

    Article  CAS  PubMed  Google Scholar 

  139. Liang, M. et al. Ubiquitination and proteolysis of cancer-derived Smad4 mutants by SCFSkp2. Mol. Cell. Biol. 24, 7524–7537 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Huang, Z., Nie, L., Xu, M. & Sun, X. H. Notch-induced E2A degradation requires CHIP and Hsc70 as novel facilitators of ubiquitination. Mol. Cell. Biol. 24, 8951–8962 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nie, L., Xu, M., Vladimirova, A. & Sun, X. H. Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J. 22, 5780–5792 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nie, L., Wu, H. & Sun, X. H. Ubiquitination and degradation of Tal1/SCL is induced by Notch signaling and depends on Skp2 and CHIP. J. Biol. Chem. (2007).

  143. Sanada, T. et al. Skp2 overexpression is a p27Kip1-independent predictor of poor prognosis in patients with biliary tract cancers. Cancer Sci. 95, 969–976 (2004).

    Article  CAS  PubMed  Google Scholar 

  144. Traub, F., Mengel, M., Luck, H. J., Kreipe, H. H. & von Wasielewski, R. Prognostic impact of Skp2 and p27 in human breast cancer. Breast Cancer Res. Treat 99, 185–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  145. Sonoda, H. et al. Significance of skp2 expression in primary breast cancer. Clin. Cancer Res. 12, 1215–1220 (2006).

    Article  CAS  PubMed  Google Scholar 

  146. Narayan, G. et al. Gene dosage alterations revealed by cDNA microarray analysis in cervical cancer: identification of candidate amplified and overexpressed genes. Genes Chromosomes Cancer 46, 373–384 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Gstaiger, M. et al. Skp2 is oncogenic and overexpressed in human cancers. Proc. Natl Acad. Sci. USA 98, 5043–5048 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Nishida, N., Nagasaka, T., Kashiwagi, K., Boland, C. R. & Goel, A. High copy amplification of the Aurora-A gene is associated with chromosomal instability phenotype in human colorectal cancers. Cancer Biol. Ther. 6, 525–533 (2007).

    Article  CAS  PubMed  Google Scholar 

  149. Kamata, Y. et al. High expression of skp2 correlates with poor prognosis in endometrial endometrioid adenocarcinoma. J. Cancer Res. Clin. Oncol. 131, 591–596 (2005).

    Article  CAS  PubMed  Google Scholar 

  150. Lahav-Baratz, S. et al. Decreased level of the cell cycle regulator p27 and increased level of its ubiquitin ligase Skp2 in endometrial carcinoma but not in normal secretory or in hyperstimulated endometrium. Mol. Hum. Reprod. 10, 567–572 (2004).

    Article  CAS  PubMed  Google Scholar 

  151. Ma, X. M., Liu, J. H., Guo, J. W., Liu, Y. & Zuo, L. F. Correlation of Skp2 expression in gastric carcinoma to expression of P27 and PTEN. Ai Zheng 25, 56–61 (2006).

    CAS  PubMed  Google Scholar 

  152. Ma, X. M., Liu, Y., Guo, J. W., Liu, J. H. & Zuo, L. F. Relation of overexpression of S phase kinase-associated protein 2 with reduced expression of p27 and PTEN in human gastric carcinoma. World J. Gastroenterol. 11, 6716–6721 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Schiffer, D., Cavalla, P., Fiano, V., Ghimenti, C. & Piva, R. Inverse relationship between p27/Kip1 and the F-box protein Skp2 in human astrocytic gliomas by immunohistochemistry and western blot. Neurosci. Lett. 328, 125–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  154. Saigusa, K. et al. Overexpressed Skp2 within 5p amplification detected by array-based comparative genomic hybridization is associated with poor prognosis of glioblastomas. Cancer Sci. 96, 676–683 (2005).

    Article  CAS  PubMed  Google Scholar 

  155. Penin, R. M. et al. Over-expression of p45SKP2 in Kaposi's sarcoma correlates with higher tumor stage and extracutaneous involvement but is not directly related to p27KIP1 down-regulation. Mod. Pathol. 15, 1227–1235 (2002).

    Article  CAS  PubMed  Google Scholar 

  156. Inui, N. et al. High expression of Cks1 in human non-small cell lung carcinomas. Biochem. Biophys. Res. Commun. 303, 978–984 (2003).

    Article  CAS  PubMed  Google Scholar 

  157. Yokoi, S. et al. Amplification and overexpression of SKP2 are associated with metastasis of non-small-cell lung cancers to lymph nodes. Am. J. Pathol. 165, 175–180 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Zhu, C. Q. et al. Skp2 gene copy number aberrations are common in non-small cell lung carcinoma, and its overexpression in tumors with ras mutation is a poor prognostic marker. Clin. Cancer Res. 10, 1984–1991 (2004).

    Article  CAS  PubMed  Google Scholar 

  159. Coe, B. P. et al. High-resolution chromosome arm 5p array CGH analysis of small cell lung carcinoma cell lines. Genes Chromosomes Cancer 42, 308–313 (2005).

    Article  CAS  PubMed  Google Scholar 

  160. Zhan, F. et al. CKS1B, overexpressed in aggressive disease, regulates multiple myeloma growth and survival through SKP2- and p27Kip1-dependent and -independent mechanisms. Blood 109, 4995–5001 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Shaughnessy, J. Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kip1 and an aggressive clinical course in multiple myeloma. Hematology 10, S117–S126 (2005).

    Article  CAS  Google Scholar 

  162. Woenckhaus, C. et al. Expression of Skp2 and p27KIP1 in naevi and malignant melanoma of the skin and its relation to clinical outcome. Histol. Histopathol 20, 501–508 (2005).

    CAS  PubMed  Google Scholar 

  163. Li, Q., Murphy, M., Ross, J., Sheehan, C. & Carlson, J. A. Skp2 and p27kip1 expression in melanocytic nevi and melanoma: an inverse relationship. J. Cutan Pathol. 31, 633–642 (2004).

    Article  PubMed  Google Scholar 

  164. Katagiri, Y., Hozumi, Y. & Kondo, S. Knockdown of Skp2 by siRNA inhibits melanoma cell growth in vitro and in vivo. J. Dermatol. Sci. 42, 215–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  165. Bhatt, K. V., Hu, R., Spofford, L. S. & Aplin, A. E. Mutant B-RAF signaling and cyclin D1 regulate Cks1/S-phase kinase-associated protein 2-mediated degradation of p27Kip1 in human melanoma cells. Oncogene 26, 1056–1066 (2007).

    Article  CAS  PubMed  Google Scholar 

  166. Fukuchi, M. et al. Inverse correlation between expression levels of p27 and the ubiquitin ligase subunit Skp2 in early esophageal squamous cell carcinoma. Anticancer Res. 24, 777–783 (2004).

    CAS  PubMed  Google Scholar 

  167. Harada, K. et al. High expression of S-phase kinase-associated protein 2 (Skp2) is a strong prognostic marker in oral squamous cell carcinoma patients treated by UFT in combination with radiation. Anticancer Res. 25, 2471–2475 (2005).

    CAS  PubMed  Google Scholar 

  168. Kudo, Y. et al. High expression of S-phase kinase-interacting protein 2, human F-box protein, correlates with poor prognosis in oral squamous cell carcinomas. Cancer Res. 61, 7044–7047 (2001).

    CAS  PubMed  Google Scholar 

  169. Kitajima, S. et al. Role of Cks1 overexpression in oral squamous cell carcinomas: cooperation with Skp2 in promoting p27 degradation. Am. J. Pathol. 165, 2147–2155 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Shigemasa, K., Gu, L., O'Brien, T. J. & Ohama, K. Skp2 overexpression is a prognostic factor in patients with ovarian adenocarcinoma. Clin. Cancer Res. 9, 1756–1763 (2003).

    CAS  PubMed  Google Scholar 

  171. Sui, L. et al. Clinical significance of Skp2 expression, alone and combined with Jab1 and p27 in epithelial ovarian tumors. Oncol. Rep. 15, 765–771 (2006).

    CAS  PubMed  Google Scholar 

  172. Drobnjak, M. et al. Altered expression of p27 and Skp2 proteins in prostate cancer of African-American patients. Clin. Cancer Res. 9, 2613–2619 (2003).

    CAS  PubMed  Google Scholar 

  173. Yang, G. et al. Elevated Skp2 protein expression in human prostate cancer: association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin. Cancer Res. 8, 3419–3426 (2002).

    CAS  PubMed  Google Scholar 

  174. Amir, R. E., Haecker, H., Karin, M. & Ciechanover, A. Mechanism of processing of the NF-κB2 p100 precursor: identification of the specific polyubiquitin chain-anchoring lysine residue and analysis of the role of NEDD8-modification on the SCFβ-TrCP ubiquitin ligase. Oncogene 23, 2540–2547 (2004).

    Article  CAS  PubMed  Google Scholar 

  175. Fong, A. & Sun, S. C. Genetic evidence for the essential role of β-transducin repeat-containing protein in the inducible processing of NF-κB2/p100. J. Biol. Chem. 277, 22111–22114 (2002).

    Article  CAS  PubMed  Google Scholar 

  176. Lang, V. et al. βTrCP-mediated proteolysis of NF-κB1 p105 requires phosphorylation of p105 serines 927 and 932. Mol. Cell. Biol. 23, 402–413 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Orian, A. et al. SCFβ-TrCP ubiquitin ligase-mediated processing of NF-κB p105 requires phosphorylation of its C-terminus by IκB kinase. EMBO J. 19, 2580–2591 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Lassot, I. et al. ATF4 degradation relies on a phosphorylation-dependent interaction with the SCFβTrCP ubiquitin ligase. Mol. Cell. Biol. 21, 2192–2202 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Li, Y., Kumar, K. G., Tang, W., Spiegelman, V. S. & Fuchs, S. Y. Negative regulation of prolactin receptor stability and signaling mediated by SCFβ-TrC E3 ubiquitin ligase. Mol. Cell. Biol. 24, 4038–4048 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Besnard-Guerin, C. et al. HIV-1 Vpu sequesters β-transducin repeat-containing protein (βTrCP) in the cytoplasm and provokes the accumulation of β-catenin and other SCFβTrCP substrates. J. Biol. Chem. 279, 788–795 (2004).

    Article  CAS  PubMed  Google Scholar 

  181. Kumar, K. G., Krolewski, J. J. & Fuchs, S. Y. Phosphorylation and specific ubiquitin acceptor sites are required for ubiquitination and degradation of the IFNAR1 subunit of type I interferon receptor. J. Biol. Chem. 279, 46614–46620 (2004).

    Article  CAS  PubMed  Google Scholar 

  182. Mantovani, F. & Banks, L. Regulation of the discs large tumor suppressor by a phosphorylation-dependent interaction with the β-TrCP ubiquitin ligase receptor. J. Biol. Chem. 278, 42477–42486 (2003).

    Article  CAS  PubMed  Google Scholar 

  183. Reischl, S. et al. β-TrCP1-mediated degradation of PERIOD2 is essential for circadian dynamics. J. Biol. Rhythms 22, 375–386 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Shirogane, T., Jin, J., Ang, X. L. & Harper, J. W. SCFβ-TRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period-1 (Per1) protein. J. Biol. Chem. 280, 26863–26872 (2005).

    Article  CAS  PubMed  Google Scholar 

  185. Eide, E. J. et al. Control of mammalian circadian rhythm by CKIε-regulated proteasome-mediated PER2 degradation. Mol. Cell. Biol. 25, 2795–2807 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Tian, Y. et al. TAZ promotes PC2 degradation through a SCFβ-Trcp E3 ligase complex. Mol. Cell. Biol. 27, 6383–6395 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ding, Q. et al. Degradation of Mcl-1 by β-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Mol. Cell. Biol. 27, 4006–4017 (2007).

    Article  CAS  PubMed  Google Scholar 

  188. Tan, P. et al. Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of IκBα. Mol. Cell 3, 527–533 (1999).

    Article  CAS  PubMed  Google Scholar 

  189. Gallegos, J. R. et al. SCF TrCP1 activates and ubiquitylates TAp63γ. J. Biol. Chem. 283, 66–75 (2008).

    Article  CAS  PubMed  Google Scholar 

  190. van Kerkhof, P., Putters, J. & Strous, G. J. The ubiquitin ligase SCFβTrCP regulates the degradation of the growth hormone receptor. J. Biol. Chem. 282, 20475–20483 (2007).

    Article  CAS  PubMed  Google Scholar 

  191. Seki, A. et al. Plk1- and β-TrCP-dependent degradation of Bora controls mitotic progression. J. Cell Biol. 181, 65–78 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Soond, S. M. et al. ERK and the E3 ubiquitin ligase βTRCP targets STAT1 for degradation. J. Biol. Chem. (2008).

Download references

Acknowledgements

We thank S. Fuchs, Y. Ben-Neriah, K. Nakayama and J. Skaar for critically reading the manuscript. We apologize to colleagues whose work could not be mentioned owing to space limitations. D.F. is grateful to A. Nans. M.P. is grateful to T. M. Thor for continuous support. Work in the Pagano laboratory is supported by grants from the NIH (R37-CA76,584, R01-GM57,587, R21-CA125,173 and P30-CA01687) and the Multiple Myeloma Research Foundation senior award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Pagano.

Related links

Related links

DATABASES

National Cancer Institute

breast cancer

colorectal cancer

endometrial cancer

gastric cancer

head and neck cancer

lung cancer

lymphoma

melanoma

oesophageal cancer

pancreatic cancer

thyroid cancer

FURTHER INFORMATION

M. Pagano's homepage

Glossary

Ubiquitin

A small, 7.5-kDa protein that is ubiquitously expressed in all eukaryotes. Chains of ubiquitin moieties (connected by Lys48) target proteins for proteasomal degradation. Monoubiquitylation or polyubiquitylation through different lysine residues controls the function (not the proteolysis) of various proteins.

Proteasome

A large multisubunit protein complex (approximately 2.5 MDa) that is found in all eukaryotes and archaea, the main function of which is to degrade excessive, unneeded or damaged proteins by proteolysis using a chemical reaction that breaks peptide bonds in an ATP-dependent manner.

Ubiquitin-activating enzyme (E1)

An enzyme that activates ubiquitin in a process that requires ATP as an energy source.

Ubiquitin-conjugating enzyme (E2)

An enzyme that accepts the transfer of ubiquitin from the ubiquitin-activating enzyme (E1) and transfers it to substrates.

Ubiquitin ligase (E3)

An enzyme that functions as the substrate recognition component of the ubiquitylation machinery. E3 enzymes are capable of interacting with E2 enzymes and substrates to facilitate the transfer of ubiquitin to the selected substrate.

RING-finger proteins

Proteins that interact with E2 ubiquitin enzymes to serve as an E3 enzyme. They are subdivided structurally into multi-subunit and single-subunit types, including those containing RING-like folds such as the U-box.

HECT-domain proteins

Proteins that are characterized by the presence of a C-terminal HECT domain, which is a domain of approximately 350 amino acids that is catalytically involved in the attachment of ubiquitin to substrates.

F-box domain

Originally identified in cyclin F as a stretch of approximately 40 amino acids linking F-box proteins to SKP1 to form the core of the SCF complex.

Degron

Specific sequence of amino acids in a protein substrate typically conserved through evolution that directs the recognition of an E3 ubiquitin ligase.

Paralogues

Homologous genes that have resulted from a gene duplication event within a single genome. This is in contrast to othologous genes, which are separated by a speciation event.

C phase

The mammalian cell cycle is divided into four distinct phases called G1, S, G2 and mitosis. C phase is defined as the temporal interval between the G1–S transition and the end of mitosis when CDK activity is present.

Organomegaly

The abnormal enlargement of organs.

Mitotic catastrophe

A death resulting from failure of a cell to arrest before mitosis following DNA damage, resulting in severe aberrancies in chromosomal structure and segregation. It might share downstream events with apoptosis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frescas, D., Pagano, M. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nat Rev Cancer 8, 438–449 (2008). https://doi.org/10.1038/nrc2396

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2396

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing