Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

MYC in mammalian epidermis: how can an oncogene stimulate differentiation?

An Erratum to this article was published on 01 April 2008

Abstract

MYC in human epidermal stem cells can stimulate differentiation rather than uncontrolled proliferation. This discovery was, understandably, greeted with scepticism by researchers. However, subsequent studies have confirmed that MYC can stimulate epidermal stem cells to differentiate and have shed light on the underlying mechanisms. Two concepts that are relevant to cancer have emerged: first, MYC regulates similar genes in different cell types, but the biological consequences are context-dependent; and second, MYC activation is not a simple 'on/off' switch — the cellular response depends on the strength and duration of MYC activity, which in turn is affected by the many cofactors and regulatory pathways with which MYC interacts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of MYC activation on murine skin.
Figure 2: Concept of MYC-induced terminal differentiation as a fail-safe mechanism to prevent uncontrolled proliferation of epidermal stem cells.
Figure 3: Summary of the different effects of MYC on the epidermal stem-cell compartment.
Figure 4: Reduction in epidermal hemidesmosome number and size on activation of MYC.
Figure 5: Schematic summary of the interplay between RAC1 and MYC in regulating the epidermal stem-cell and transit-amplifying-cell compartments.
Figure 6: Chromatin modification by MYC.

Similar content being viewed by others

References

  1. Fuchs, E. Scratching the surface of skin development. Nature 445, 834–842 (2007).

    Article  CAS  Google Scholar 

  2. Owens, D. M. & Watt, F. M. Contribution of stem cells and differentiated cells to epidermal tumours. Nature Rev. Cancer 3, 444–451 (2003).

    Article  CAS  Google Scholar 

  3. Watt, F. M., Lo Celso, C. & Silva-Vargas, V. Epidermal stem cells: an update. Curr. Opin. Genet. Dev. 16, 518–524 (2006).

    Article  CAS  Google Scholar 

  4. Jones, P. H., Simons, B. D. & Watt, F. M. Sic transit Gloria. Farewell to the epidermal transit amplifying cell? Cell Stem Cell 1, 371–381 (2007).

    Article  CAS  Google Scholar 

  5. Boukamp, P. Non-melanoma skin cancer: what drives tumor development and progression? Carcinogenesis 26, 1657–1667 (2005).

    Article  CAS  Google Scholar 

  6. Bull, J. J. et al. Contrasting localization of c-Myc with other Myc superfamily transcription factors in the human hair follicle and during the hair growth cycle. J. Invest. Dermatol. 116, 617–622 (2001).

    Article  CAS  Google Scholar 

  7. Gandarillas, A. & Watt, F. M. Changes in expression of members of the fos and jun families and myc network during terminal differentiation of human keratinocytes. Oncogene 11, 1403–1407 (1995).

    CAS  PubMed  Google Scholar 

  8. Honma, M., Benitah, S. A. & Watt, F. M. Role of LIM kinases in normal and psoriatic human epidermis. Mol. Biol. Cell 17, 1888–1896 (2006).

    Article  CAS  Google Scholar 

  9. Barajon, I. et al. Pattern of expression of c-Myc, Max and Bin1 in human anagen hair follicles. Br. J. Dermatol. 144, 1193–1203 (2001).

    Article  CAS  Google Scholar 

  10. Garte, S. J. The c-myc oncogene in tumor progression. Crit. Rev. Oncog. 4, 435–449 (1993).

    CAS  PubMed  Google Scholar 

  11. Littlewood, T. D., Hancock, D. C., Danielian, P. S., Parker, M. G. & Evan, G. I. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23, 1686–1690 (1995).

    Article  CAS  Google Scholar 

  12. Coffey, R. J. Jr. et al. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta. Mol. Cell. Biol. 8, 3088–3093 (1988).

    Article  CAS  Google Scholar 

  13. Jensen, K. B. & Watt, F. M. Single-cell expression profiling of human epidermal stem and transit-amplifying cells: Lrig1 is a regulator of stem cell quiescence. Proc. Natl Acad. Sci. USA 103, 11958–11963 (2006).

    Article  CAS  Google Scholar 

  14. Frye, M. & Watt, F. M. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr. Biol. 16, 971–981 (2006).

    Article  CAS  Google Scholar 

  15. Alexandrow, M. G., Kawabata, M., Aakre, M. & Moses, H. L. Overexpression of the c-Myc oncoprotein blocks the growth-inhibitory response but is required for the mitogenic effects of transforming growth factor β1. Proc. Natl Acad. Sci. USA 92, 3239–3243 (1995).

    Article  CAS  Google Scholar 

  16. Hashiro, M., Matsumoto, K., Okumura, H., Hashimoto, K. & Yoshikawa, K. Growth inhibition of human keratinocytes by antisense c-myc oligomer is not coupled to induction of differentiation. Biochem. Biophys. Res. Comm. 174, 287–292 (1991).

    Article  CAS  Google Scholar 

  17. Gandarillas, A. & Watt, F. M. c-Myc promotes differentiation of human epidermal stem cells. Genes Dev. 11, 2869–2882 (1997).

    Article  CAS  Google Scholar 

  18. Smith, D. P., Bath, M. L., Metcalf, D., Harris, A. W. & Cory, S. Myc levels govern hematopoietic tumor type and latency in transgenic mice. Blood 108, 653–661 (2006).

    Article  CAS  Google Scholar 

  19. Gebhardt, A. et al. Myc regulates keratinocyte adhesion and differentiation via complex formation with Miz1. J. Cell Biol. 172, 139–149 (2006).

    Article  CAS  Google Scholar 

  20. Gandarillas, A., Goldsmith, L. A., Gschmeissner, S., Leigh, I. M. & Watt, F. M. Evidence that apoptosis and terminal differentiation of epidermal keratinocytes are distinct processes. Exp. Dermatol. 8, 71–79 (1999).

    Article  CAS  Google Scholar 

  21. Pelengaris, S., Littlewood, T., Khan, M., Elia, G. & Evan, G. Reversible activation of c-Myc in skin: induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol. Cell 3, 565–577 (1999).

    Article  CAS  Google Scholar 

  22. Wanzel, M., Herold, S. & Eilers, M. Transcriptional repression by Myc. Trends Cell Biol. 13, 146–150 (2003).

    Article  CAS  Google Scholar 

  23. Knies-Bamforth, U. E., Fox, S. B., Poulsom, R., Evan, G. I. & Harris, A. L. c-Myc interacts with hypoxia to induce angiogenesis in vivo by a vascular endothelial growth factor-dependent mechanism. Cancer Res. 64, 6563–6567 (2004).

    Article  CAS  Google Scholar 

  24. Flores, I., Evan, G. & Blasco, M. A. Genetic analysis of myc and telomerase interactions in vivo. Mol. Cell. Biol. 26, 6130–6138 (2006).

    Article  CAS  Google Scholar 

  25. Flores, I., Murphy, D. J., Swigart, L. B., Knies, U. & Evan, G. I. Defining the temporal requirements for Myc in the progression and maintenance of skin neoplasia. Oncogene 23, 5923–5930 (2004).

    Article  CAS  Google Scholar 

  26. Bull, J. J. et al. Ectopic expression of c-Myc in the skin affects the hair growth cycle and causes an enlargement of the sebaceous gland. Br. J. Dermatol. 152, 1125–1123 (2005).

    Article  CAS  Google Scholar 

  27. Waikel, R. L., Wang, X. J. & Roop, D. R. Targeted expression of c-Myc in the epidermis alters normal proliferation, differentiation and UV-B induced apoptosis. Oncogene 18, 4870–4878 (1999).

    Article  CAS  Google Scholar 

  28. Arnold, I. & Watt, F. M. c-Myc activation in transgenic mouse epidermis results in mobilization of stem cells and differentiation of their progeny. Curr. Biol. 11, 558–568 (2001).

    Article  CAS  Google Scholar 

  29. Waikel, R. L., Kawachi, Y., Waikel, P. A., Wang, X. J. & Roop, D. R. Deregulated expression of c-Myc depletes epidermal stem cells. Nature Genet. 28, 165–168 (2001).

    Article  CAS  Google Scholar 

  30. Koster, M. I., Huntzinger, K. A. & Roop, D. R. Epidermal differentiation: transgenic/knockout mouse models reveal genes involved in stem cell fate decisions and commitment to differentiation. J. Investig. Dermatol. Symp. Proc. 7, 41–45 (2002).

    Article  CAS  Google Scholar 

  31. Braun, K. M. et al. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 130, 5241–5255 (2003).

    Article  CAS  Google Scholar 

  32. Frye, M., Gardner, C., Li, E. R., Arnold, I. & Watt, F. M. Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development 130, 2793–2780 (2003).

    Article  CAS  Google Scholar 

  33. Rounbehler, R. J., Schneider-Broussard, R., Conti, C. J. & Johnson, D. G. Myc lacks E2F1′s ability to suppress skin carcinogenesis. Oncogene 20, 5341–5349 (2001).

    Article  CAS  Google Scholar 

  34. Soucek, L., Nasi, S. & Evan, G. I. Omomyc expression in skin prevents Myc-induced papillomatosis. Cell Death Differ. 11, 1038–1045 (2004).

    Article  CAS  Google Scholar 

  35. Gebhardt, A. et al. Miz1 is required for hair follicle structure and hair morphogenesis. J. Cell Sci. 120, 2586–2593 (2007).

    Article  CAS  Google Scholar 

  36. Wu, S. et al. Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 22, 351–360 (2003).

    Article  CAS  Google Scholar 

  37. Zanet, J. et al. Endogenous Myc controls mammalian epidermal cell size, hyperproliferation, endoreplication and stem cell amplification. J. Cell Sci. 118, 1693–1704 (2005).

    Article  CAS  Google Scholar 

  38. Oskarsson, T. et al. Skin epidermis lacking the c-Myc gene is resistant to Ras-driven tumorigenesis but can reacquire sensitivity upon additional loss of the p21Cip1 gene. Genes Dev. 20, 2024–2029 (2006).

    Article  CAS  Google Scholar 

  39. Mill, P. et al. Shh controls epithelial proliferation via independent pathways that converge on N-Myc. Dev. Cell 9, 293–303 (2005).

    Article  CAS  Google Scholar 

  40. Silva-Vargas, V. et al. β-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev. Cell 9, 121–131 (2005).

    Article  CAS  Google Scholar 

  41. Watt, F. M. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J. 21, 3919–3926 (2002).

    Article  CAS  Google Scholar 

  42. Benitah, S. A., Frye, M., Glogauer, M. & Watt, F. M. Stem cell depletion through epidermal deletion of Rac1. Science 309, 933–935 (2005).

    Article  Google Scholar 

  43. Huang, Z., Traugh, J. A. & Bishop, J. M. Negative control of the Myc protein by the stress-responsive kinase Pak2. Mol. Cell. Biol. 24, 1582–1594 (2004).

    Article  CAS  Google Scholar 

  44. Benitah, S. A. & Watt, F. M. Epidermal deletion of Rac1 causes stem cell depletion, irrespective of whether deletion occurs during embryogenesis or adulthood. J. Invest. Dermatol. 127, 1555–1557 (2007).

    Article  CAS  Google Scholar 

  45. Chrostek, A. et al. Rac1 is crucial for hair follicle integrity but is not essential for maintenance of the epidermis. Mol. Cell. Biol. 26, 6957–6970 (2006).

    Article  CAS  Google Scholar 

  46. Castilho, R. M. et al. Requirement of Rac1 distinguishes follicular from interfollicular epithelial stem cells. Oncogene 26, 5078–5085 (2007).

    Article  CAS  Google Scholar 

  47. Murphy, M. J., Wilson, A. & Trumpp, A. More than just proliferation: Myc function in stem cells. Trends Cell Biol. 15, 128–137 (2005).

    Article  CAS  Google Scholar 

  48. Cowling, V. H. & Cole, M. D. E-cadherin repression contributes to c-Myc-induced epithelial cell transformation. Oncogene 26, 3582–3586 (2007).

    Article  CAS  Google Scholar 

  49. Sumi, T., Tsuneyoshi, N., Nakatsuji, N. & Suemori, H. Apoptosis and differentiation of human embryonic stem cells induced by sustained activation of c-Myc. Oncogene 26, 5564–5576 (2007).

    Article  CAS  Google Scholar 

  50. Wilson, A. et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 18, 2747–2763 (2004).

    Article  CAS  Google Scholar 

  51. Amati, B., Frank, S. R., Donjerkovic, D. & Taubert, S. Function of the c-Myc oncoprotein in chromatin remodeling and transcription. Biochim. Biophys. Acta 1471, M135–M145 (2001).

    CAS  PubMed  Google Scholar 

  52. Frank, S. R. et al. MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep. 4, 575–580 (2003).

    Article  CAS  Google Scholar 

  53. Knoepfler, P. S. et al. Myc influences global chromatin structure. EMBO J. 25, 2723–2734 (2006).

    Article  CAS  Google Scholar 

  54. Frye, M., Fisher, A. G. & Watt, F. M. Epidermal stem cells are defined by global histone modifications that are altered by Myc-induced differentiation. PLoS ONE 2, e763 (2007).

    Article  Google Scholar 

  55. Secombe, J., Li, L., Carlos, L. & Eisenman, R. N. The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev. 21, 537–551 (2007).

    Article  CAS  Google Scholar 

  56. Markova, N. G., Karaman-Jurukovska, N., Pinkas-Sarafova, A., Marekov, L. N. & Simon, M. Inhibition of histone deacetylation promotes abnormal epidermal differentiation and specifically suppresses the expression of the late differentiation marker profilaggrin. J. Invest. Dermatol. 127, 1126–1139 (2007).

    Article  CAS  Google Scholar 

  57. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  Google Scholar 

  58. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    Article  CAS  Google Scholar 

  59. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nature Biotechnol. (in the press).

  60. Dai, X., Schonbaum, C., Degenstein, L., Bai, W., Mahowald, A. & Fuchs, E. The ovo gene required for cuticle formation and oogenesis in flies is involved in hair formation and spermatogenesis in mice. Genes Dev. 12, 3452–3463 (1998).

    Article  CAS  Google Scholar 

  61. Nair, M. et al. Ovol1 regulates the growth arrest of embryonic epidermal progenitor cells and represses c-myc transcription. J. Cell Biol. 173, 253–264 (2006).

    Article  CAS  Google Scholar 

  62. Gomis, R. R. et al. FoxO-Smad synexpression group in human keratinocytes. Proc. Natl Acad. Sci. USA 103, 12747–12752 (2006).

    Article  CAS  Google Scholar 

  63. Kallies, A. & Nutt, S. L. Terminal differentiation of lymphocytes depends on Blimp-1. Curr. Opin. Immunol. 19, 156–162 (2007).

    Article  CAS  Google Scholar 

  64. Horsley, V. et al. Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126, 597–609 (2006).

    Article  CAS  Google Scholar 

  65. Magnúsdóttir, E. et al. Epidermal terminal differentiation depends on B lymphocyte-induced maturation protein-1. Proc. Natl Acad. Sci. USA 104, 14988–14993 (2007).

    Article  Google Scholar 

  66. van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    Article  CAS  Google Scholar 

  67. Niemann, C., Owens, D. M., Hülsken, J., Birchmeier, W. & Watt, F. M. Expression of ΔNLef1 in mouse epidermis results in differentiation of hair follicles into squamous epidermal cysts and formation of skin tumours. Development 129, 95–109 (2002).

    CAS  PubMed  Google Scholar 

  68. Niemann, C., Owens, D. M., Schettina, P. & Watt, F. M. Dual role of inactivating Lef1 mutations in epidermis: tumor promotion and specification of tumor type. Cancer Res. 67, 2916–2921 (2007).

    Article  CAS  Google Scholar 

  69. Williamson, L. et al. Pemphigus vulgaris identifies plakoglobin as key suppressor of c-Myc in the skin. EMBO J. 25, 3298–3309 (2006).

    Article  CAS  Google Scholar 

  70. Gallant P. Control of transcription by Pontin and Reptin. Trends Cell Biol. 17, 187–192 (2007).

    Article  CAS  Google Scholar 

  71. Etard, C., Gradl, D., Kunz, M. & Wedlich, D. Pontin and Reptin regulate cell proliferation in early Xenopus embryos in collaboration with c-Myc and Miz-1. Mech. Dev. 122, 545–556 (2005).

    Article  CAS  Google Scholar 

  72. Senoo-Matsuda, N. & Johnston, L. A. Soluble factors mediate competitive and cooperative interactions between cells expressing different levels of Drosophila Myc. Proc. Natl Acad. Sci. USA 104, 18543–18548 (2007).

    Article  CAS  Google Scholar 

  73. Evans, R. D. et al. A tumor-associated β1 integrin mutation that abrogates epithelial differentiation control. J. Cell Biol. 160, 589–596 (2003).

    Article  CAS  Google Scholar 

  74. Zahir, N. et al. Autocrine laminin-5 ligates α6β4 integrin and activates RAC and NFκB to mediate anchorage-independent survival of mammary tumors. J. Cell Biol. 163, 1397–1407 (2003).

    Article  CAS  Google Scholar 

  75. Brenner, C. et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 24, 336–346 (2005).

    Article  CAS  Google Scholar 

  76. Satou, A., Taira, T., Iguchi-Ariga, S. M. & Ariga, H. A novel transrepression pathway of c-Myc. Recruitment of a transcriptional corepressor complex to c-Myc by MM-1, a c-Myc-binding protein. J. Biol. Chem. 276, 46562–46567 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fiona M. Watt.

Related links

Related links

DATABASES

National cancer Institute

non-melanoma skin cancer

FURTHER INFORMATION

Fiona Watt's homepages

Fiona Watt's homepages

How many people get basal and squamous cell skin cancers?

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watt, F., Frye, M. & Benitah, S. MYC in mammalian epidermis: how can an oncogene stimulate differentiation?. Nat Rev Cancer 8, 234–242 (2008). https://doi.org/10.1038/nrc2328

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2328

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing