Abstract
We present a set of protocols showing how to use the 3DNA suite of programs to analyze, rebuild and visualize three-dimensional nucleic-acid structures. The software determines a wide range of conformational parameters, including the identities and rigid-body parameters of interacting bases and base-pair steps, the nucleotides comprising helical fragments, the area of overlap of stacked bases and so on. The reconstruction of three-dimensional structure takes advantage of rigorously defined rigid-body parameters, producing rectangular block representations of the nucleic-acid bases and base pairs and all-atom models with approximate sugar–phosphate backbones. The visualization components create vector-based drawings and scenes that can be rendered as raster-graphics images, allowing for easy generation of publication-quality figures. The utility programs use geometric variables to control the view and scale of an object, for comparison of related structures. The commands run in seconds even for large structures. The software and related information are available at http://3dna.rutgers.edu/.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Tolstorukov, M.Y., Colasanti, A.V., McCandlish, D., Olson, W.K. & Zhurkin, V.B. A novel 'roll-and-slide' mechanism of DNA folding in chromatin. Implications for nucleosome positioning. J. Mol. Biol. 371, 725–738 (2007).
Luscombe, N.M., Laskowski, R.A. & Thornton, J.M. Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res. 29, 2860–2874 (2001).
Lu, X.-J., Shakked, Z. & Olson, W.K. A-form conformational motifs in ligand-bound DNA structures. J. Mol. Biol. 300, 819–840 (2000).
Tinoco, I. Jr. & Bustamante, C. How RNA folds. J. Mol. Biol. 293, 271–281 (1999).
Auffinger, P. & Westhof, E. Rules governing the orientation of the 2′-hydroxyl group in RNA. J. Mol. Biol. 274, 54–63 (1997).
Leontis, N.B. & Westhof, E. Geometric nomenclature and classification of RNA base pairs. RNA 7, 499–512 (2001).
Dickerson, R.E. et al. Definitions and nomenclature of nucleic acid structure parameters. J. Mol. Biol. 208, 787–791 (1989).
Lu, X.-J. & Olson, W.K. Resolving the discrepancies among nucleic acid conformational analyses. J. Mol. Biol. 285, 1563–1575 (1999).
Olson, W.K., Gorin, A.A., Lu, X.-J., Hock, L.M. & Zhurkin, V.B. DNA sequence-dependent deformability deduced from protein-DNA crystal complexes. Proc. Natl. Acad. Sci. USA 95, 11163–11168 (1998).
Olson, W.K., Colasanti, A.V., Lu, X.-J. & Zhurkin, V.B. Physico-chemical properties of nucleic acids: character and recognition of Watson-Crick base pairs. In Wiley Encyclopedia of Chemical Biology. 10.1002/9780470048672.wecb452 (John Wiley & Sons, Hoboken, NJ, USA, 2008).
Olson, W.K. et al. A standard reference frame for the description of nucleic acid base-pair geometry. J. Mol. Biol. 313, 229–237 (2001).
Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 Ångstrom resolution. Science 289, 905–920 (2000).
Mandel-Gutfreund, Y., Margalit, H., Jernigan, R.L. & Zhurkin, V.B. A role for C···O interactions in protein–DNA recognition. J. Mol. Biol. 277, 1129–1140 (1998).
Treger, M. & Westhof, E. Statistical analysis of atomic contacts at RNA–protein interfaces. J. Mol. Recognit. 14, 199–214 (2001).
Suzuki, M. DNA recognition code of transcription factors in the helix-turn-helix, probe helix, hormone receptor, and zinc finger families. Proc. Natl. Acad. Sci. USA 91, 12357–12363 (1994).
Tatano, M. et al. DNA recognition by β-sheets. Biopolymers 44, 335–359 (1997).
Jones, S., van Heyningen, P., Berman, H.M. & Thornton, J.M. Protein-DNA interactions: a structural analysis. J. Mol. Biol. 287, 877–896 (1999).
Nadassy, K., Wodak, S.J. & Janin, J. Structural features of protein-nucleic acid recognition sites. Biochemistry 38, 1999–2017 (1999).
Luscombe, N.M., Laskowski, R.A. & Thornton, J.M. NUCPLOT: a program to generate schematic diagrams of protein-nucleic acid interactions. Nucleic Acids Res. 25, 4940–4945 (1997).
Woda, J., Schneider, B., Patel, K., Mistry, K. & Berman, H.M. An analysis of the relationship between hydration and protein–DNA interactions. Biophys. J. 75, 2170–2177 (1998).
Kono, H. & Sarai, A. Structure-based prediction of DNA target sites by regulatory proteins. Protein-Struct. Func. Genet. 35, 114–131 (1999).
Pichierri, F., Aida, M., Gromiha, M.M. & Sarai, A. Free-energy maps of base-amino acid interactions for DNA–protein recognition. J. Am. Chem. Soc. 121, 6152–6157 (1999).
Ge, W., Schneider, B. & Olson, W.K. Knowledge-based elastic potentials for docking drugs or proteins with nucleic acids. Biophys. J. 88, 1166–1190 (2005).
Lu, X.-J. & Olson, W.K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31, 5108–5121 (2003).
Zhurkin, V.B., Lysov, Y.P. & Ivanov, V.I. Anisotropic flexibility of DNA and the nucleosomal structure. Nucleic Acids Res. 6, 1081–1096 (1979).
Bolshoy, A., McNamara, P., Harrington, R.E. & Trifonov, E.N. Curved DNA without A–A: experimental estimation of all 16 DNA wedge angles. Proc. Natl. Acad. Sci. USA 88, 2312–2316 (1991).
El Hassan, M.A. & Calladine, C.R. The assessment of the geometry of dinucleotide steps in double-helical DNA: a new local calculation scheme. J. Mol. Biol. 251, 648–664 (1995).
Lu, X.-J., El Hassan, M.A. & Hunter, C.A. Structure and conformation of helical nucleic acids: analysis program (SCHNAaP). J. Mol. Biol. 273, 668–680 (1997).
Lu, X.-J., El Hassan, M.A. & Hunter, C.A. Structure and conformation of helical nucleic acids: rebuilding program (SCHNArP). J. Mol. Biol. 273, 681–691 (1997).
Lu, X.-J., Babcock, M.S. & Olson, W.K. Mathematical overview of nucleic acid analysis programs. J. Biomol. Struct. Dynam. 16, 833–843 (1999).
Berman, H.M. et al. The Nucleic Acid Database: a comprehensive relational database of three-dimensional structures of nucleic acids. Biophys. J. 63, 751–759 (1992).
Sühnel, J. Views of RNA on the World Wide Web. Trends in Genetics 13, 206–207 (1997).
Merritt, E.A. & Bacon, D.J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).
Berman, H.M. et al. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).
Auffinger, P. & Hashem, Y. SwS: a solvation web service for nucleic acids. Bioinformatics 23, 1035–1037 (2007).
Dixit, S.B. & Beveridge, D.L. Structural bioinformatics of DNA: a web-based tool for the analysis of molecular dynamics results and structure prediction. Bioinformatics 22, 1007–1009 (2006).
Dror, O., Nussinov, R. & Wolfson, H. The ARTS web server for aligning RNA tertiary structures. Nucleic Acids Res. 34, W412–W415 (2006).
van Dijk, M., van Dijk, A.D.J., Hsu, V., Boelens, R. & Bonvin, A.M.J.J. Information-driven protein–DNA docking using HADDOCK: it is a matter of flexibility. Nucleic Acids Res. 34, 3317–3325 (2006).
Banerjee, A. et al. Feature extraction using molecular planes for fuzzy relational clustering of a flexible dopamine reuptake inhibitor. J. Chem. Inf. Model. 47, 2216–2227 (2007).
Babcock, M.S., Pednault, E.P.D. & Olson, W.K. Nucleic acid structure analysis: mathematics for local Cartesian and helical structure parameters that are truly comparable between structures. J. Mol. Biol. 237, 125–156 (1994).
Clowney, L., Jain, S.C., Srinivasan, A.R., Westbrook, J., Olson, W.K. & Berman, H.M. Geometric parameters in nucleic acids: nitrogenous bases. J. Am. Chem. Soc. 118, 509–518 (1996).
Dickerson, R.E. DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 26, 1906–1926 (1998).
Gorin, A.A., Zhurkin, V.B. & Olson, W.K. B-DNA twisting correlates with base pair morphology. J. Mol. Biol. 247, 34–48 (1995).
Lavery, R. & Sklenar, H. The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. J. Biomol. Struct. Dynam. 6, 63–91 (1988).
Lavery, R. & Sklenar, H. Defining the structure of irregular nucleic acids: conventions and principles. J. Biomol. Struct. Dynam. 6, 655–667 (1989).
Macke, T. & Case, D.A. Modeling unusual nucleic acid structures. In Molecular Modeling of Nucleic Acids (eds. Leontis, N.B. & SantaLucia J. Jr.) 379–393 (American Chemical Society, Washington, DC, 1998).
Tung, C.-S. & Carter, E.S. II Nucleic acid modeling tool (NAMOT): an interactive graphic tool for modeling nucleic acid structures. Bioinformatics 10, 427–433 (1994).
Major, F. Building three-dimensional ribonucleic acid structures. IEEE Comput. Sci. Eng. 5, 44–53 (2003).
Sayle, R.A. & Milnerwhite, E.J. RasMol: biomolecular graphics for all. Trends Biochem. Sci. 20, 374–376 (1995).
Massire, C., Gaspin, C. & Westhof, E. DRAWNA: a program for drawing schematic views of nucleic acids. J. Mol. Graph. 12, 201–206 (1994).
Huang, C.C., Couch, G.S., Pettersen, E.F. & Ferrin, T.E. Chimera: an extensible molecular modeling application constructed using standard components. Pac. Symp. Biocomput. 1, 724 (1996).
Trifonov, E.N. & Sussman, J.L. The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc. Natl. Acad. Sci. USA 77, 3816–3820 (1980).
Hagerman, P.J. Sequence dependence of the curvature of DNA: a test of the phasing hypothesis. Biochemistry 24, 7033–7037 (1985).
Koo, H.-S., Wu, H.-M. & Crothers, D.M. DNA bending at adenine thymine tracts. Nature 308, 501–506 (1986).
Hagerman, P.J. Sequence-directed curvature of DNA. Nature 321, 449–450 (1986).
Ulanovsky, L.E. & Trifonov, E.N. Estimation of wedge components in curved DNA. Nature 326, 720–722 (1987).
Schultz, S.C., Shields, G.C. & Steitz, T.A. Crystal structure of a CAP–DNA complex: the DNA is bent by 90°. Science 253, 1001–1007 (1991).
Parkinson, G., Wilson, C., Gunasekera, Ebright, Y.W., Ebright, R.E. & Berman, H.M. Structure of the CAP–DNA complex at 2.5 Å resolution: a complete picture of the protein–DNA interface. J. Mol. Biol. 260, 395–408 (1996).
Richmond, T.J. & Davey, C.A. The structure of DNA in the nucleosome core. Nature 423, 145–150 (2003).
Calladine, C.R., Drew, H.R., Luisi, B.F. & Travers, A.A. Understanding DNA: the Molecule and How It Works Chapter 4 (Elsevier Academic Press, San Diego, CA, 2004).
Olson, W.K., Srinivasan, A.R., Marky, N.L. & Balaji, V.N. Theoretical probes of DNA conformation examining the B leads to Z conformational transition. Cold Spring Harb. Symp. Quant. Biol. 47, 229–241 (1983).
Harvey, S.C. DNA structural dynamics: longitudinal breathing as a possible mechanism for the B->Z transition. Nucleic Acids Res. 11, 4867–4878 (1983).
Ha, S.C., Lowenhaupt, K., Rich, A., Kim, Y.-G. & Kim, K.K. Crystal structure of a junction between B-DNA and Z-DNA reveals two extruded bases. Nature 437, 1183–1186 (2005).
Nowakowski, J., Shim, P.J., Stout, C.D. & Joyce, G.F. Alternative conformations of a nucleic acid four-way junction. J. Mol. Biol. 300, 93–102 (2000).
Klein, D.J., Schmeing, T.M., Moore, P.B. & Steitz, T.A. The kink-turn: a new RNA secondary structure motif. EMBO J. 20, 4214–4221 (2001).
Matsumoto, A. & Olson, W.K. Sequence-dependent motions of DNA: a normal mode analysis at the base-pair level. Biophys. J. 83, 22–41 (2002).
Chen, S., Vojtechovsky, J., Parkinson, G.N., Ebright, R.H. & Berman, H.M. Indirect readout of DNA sequence at the primary-kink site in the CAP–DNA complex: DNA binding specificity based on energetics of DNA kinking. J. Mol. Biol. 314, 63–74 (2001).
Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B. & Steitz, T.A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. USA 98, 4899–4903 (2001).
Wimberly, B.T., Guymon, R., McCutcheon, J.P., White, S.W. & Ramakrishnan, V. A detailed view of a ribosomal active site: the structure of the L11-RNA complex. Cell 97, 491–502 (1999).
Zoll, J., Tessari, M., Van Kuppeveld, F.J.M., Melchers, W.J.G. & Heus, H.A. Breaking pseudo-twofold symmetry in the poliovirus 3′-UTR Y-stem by restoring Watson–Crick base pairs. RNA 13, 781–792 (2007).
Davey, C.A., Sargent, D.F., Luger, K., Mäder, A.W. & Richmond, T.J. Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319, 1097–1113 (2002).
Westbrook, J., Ito, N., Nakamura, H., Henrick, K. & Berman, H.M. PDBML: the representation of archival macromolecular structure data in XML. Bioinformatics 7, 988–992 (2005).
Acknowledgements
This work has been generously supported by the U.S. Public Health Service under research grant GM20861. We are grateful to Mauricio Esguerra and Guohui Zheng for their careful reading of the manuscript and independent validation of the protocols presented in this manuscript and to the users of 3DNA for using the software to address real-world problems, and communicating the difficulties that they encounter. Positive interactions with the users have been the driving force behind the development and improvement of 3DNA. We also thank the editor and the anonymous reviewers whose comments helped to clarify the presentation of the protocols.
Author information
Authors and Affiliations
Corresponding authors
Supplementary information
Supplementary Data
Rectangular base-pair block of size (4.5-by-10-by-0.5) in Alchemy format (ZIP 0 kb)
Supplementary Data
Input file for "rebuild" of 45-degree propeller used in Recipe#1, Box 3 (ZIP 0 kb)
Supplementary Data
Input file for "rebuild" of roll-introduced DNA curvature used in Recipe#2, Box 3. This file uses a short-handed form with only 6 dimer step parameters, explicitly setting the six base-pair parameters (propeller, buckle etc) to zeros. (ZIP 0 kb)
Rights and permissions
About this article
Cite this article
Lu, XJ., Olson, W. 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat Protoc 3, 1213–1227 (2008). https://doi.org/10.1038/nprot.2008.104
Published:
Issue Date:
DOI: https://doi.org/10.1038/nprot.2008.104
This article is cited by
-
Unlocking the potential of RNAi as a therapeutic strategy against infectious viruses: an in-silico study
Chemical Papers (2024)
-
Uracil-DNA glycosylase efficiency is modulated by substrate rigidity
Scientific Reports (2023)
-
Insight into the on/off switch that regulates expression of the MSMEG-3762/63 efflux pump in Mycobacterium smegmatis
Scientific Reports (2023)
-
StackCirRNAPred: computational classification of long circRNA from other lncRNA based on stacking strategy
BMC Bioinformatics (2022)
-
Structural determinants of DNA recognition by the NO sensor NsrR and related Rrf2-type [FeS]-transcription factors
Communications Biology (2022)