Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Forces driving epithelial wound healing

Abstract

A fundamental feature of multicellular organisms is their ability to self-repair wounds through the movement of epithelial cells into the damaged area. This collective cellular movement is commonly attributed to a combination of cell crawling and ‘purse-string’ contraction of a supracellular actomyosin ring. Here we show by direct experimental measurement that these two mechanisms are insufficient to explain force patterns observed during wound closure. At early stages of the process, leading actin protrusions generate traction forces that point away from the wound, showing that wound closure is initially driven by cell crawling. At later stages, we observed unanticipated patterns of traction forces pointing towards the wound. Such patterns have strong force components that are both radial and tangential to the wound. We show that these force components arise from tensions transmitted by a heterogeneous actomyosin ring to the underlying substrate through focal adhesions. The structural and mechanical organization reported here provides cells with a mechanism to close the wound by cooperatively compressing the underlying substrate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell morphology and kinematics during wound healing.
Figure 2: Traction forces during wound healing.
Figure 3: Traction forces in the absence of an actomyosin ring.
Figure 4: Traction forces after laser ablation of the actomyosin ring.
Figure 5: Force transmission from the ring to the substrate creates heterogeneous stresses and inward-pointing displacements of the underlying substrate.

Similar content being viewed by others

References

  1. Shaw, T. J. & Martin, P. Wound repair at a glance. J. Cell Sci. 122, 3209–3213 (2009).

    Article  Google Scholar 

  2. Sonnemann, K. J. & Bement, W. M. Wound repair: Toward understanding and integration of single-cell and multicellular wound responses. Annu. Rev. Cell Dev. Biol. 27, 237–263 (2011).

    Article  Google Scholar 

  3. Cordeiro, J. O. V. & Jacinto, A. N. The role of transcription-independent damage signals in the initiation of epithelial wound healing. Nature Rev. Mol. Cell Biol. 14, 249–262 (2013).

    Article  Google Scholar 

  4. Crosby, L. M. & Waters, C. M. Epithelial repair mechanisms in the lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 298, L715–L731 (2010).

    Article  Google Scholar 

  5. Arwert, E. N., Hoste, E. & Watt, F. M. Epithelial stem cells, wound healing and cancer. Nature Rev. Cancer 12, 170–180 (2012).

    Article  Google Scholar 

  6. Kuipers, D. et al. Epithelial repair is a two-stage process driven first by dying cells and then by their neighbours. J. Cell Sci. 127, 1229–1241 (2014).

    Article  Google Scholar 

  7. Davidson, L. A., Ezin, A. M. & Keller, R. Embryonic wound healing by apical contraction and ingression in Xenopus laevis. Cell Motil. Cytoskeleton 53, 163–176 (2002).

    Article  Google Scholar 

  8. Anon, E. et al. Cell crawling mediates collective cell migration to close undamaged epithelial gaps. Proc. Natl Acad. Sci. USA 109, 10891–10896 (2012).

    Article  ADS  Google Scholar 

  9. Klarlund, J. K. Dual modes of motility at the leading edge of migrating epithelial cell sheets. Proc. Natl Acad. Sci. USA 109, 15799–15804 (2012).

    Article  ADS  Google Scholar 

  10. Tamada, M., Perez, T. D., Nelson, W. J. & Sheetz, M. P. Two distinct modes of myosin assembly and dynamics during epithelial wound closure. J. Cell Biol. 176, 27–33 (2007).

    Article  Google Scholar 

  11. Abreu-Blanco, M. T., Verboon, J. M., Liu, R., Watts, J. J. & Parkhurst, S. M. Drosophila embryos close epithelial wounds using a combination of cellular protrusions and an actomyosin purse string. J. Cell Sci. 125, 5984–5997 (2012).

    Article  Google Scholar 

  12. Martin, P. & Lewis, J. Actin cables and epidermal movement in embryonic wound healing. Nature 360, 179–183 (1992).

    Article  ADS  Google Scholar 

  13. Bement, W. M., Forscher, P. & Mooseker, M. S. A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance. J. Cell Biol. 121, 565–578 (1993).

    Article  Google Scholar 

  14. Jacinto, A., Woolner, S. & Martin, P. Dynamic analysis of dorsal closure in Drosophila: From genetics to cell biology. Dev. Cell 3, 9–19 (2002).

    Article  Google Scholar 

  15. Hutson, M. S. et al. Forces for morphogenesis investigated with laser microsurgery and quantitative modeling. Science 300, 145–149 (2003).

    Article  ADS  Google Scholar 

  16. Antunes, M., Pereira, T., Cordeiro, J. V., Almeida, L. & Jacinto, A. Coordinated waves of actomyosin flow and apical cell constriction immediately after wounding. J. Cell Biol. 202, 365–379 (2013).

    Article  Google Scholar 

  17. Fenteany, G., Janmey, P. A. & Stossel, T. P. Signaling pathways and cell mechanics involved in wound closure by epithelial cell sheets. Curr. Biol. 10, 831–838 (2000).

    Article  Google Scholar 

  18. Omelchenko, T., Vasiliev, J. M., Gelfand, I. M., Feder, H. H. & Bonder, E. M. Rho-dependent formation of epithelial ‘leader’ cells during wound healing. Proc. Natl Acad. Sci. USA 100, 10788–10793 (2003).

    Article  ADS  Google Scholar 

  19. Roure, O. D. et al. Force mapping in epithelial cell migration. Proc. Natl Acad. Sci. USA 102, 2390–2395 (2005).

    Article  ADS  Google Scholar 

  20. Poujade, M. et al. Collective migration of an epithelial monolayer in response to a model wound. Proc. Natl Acad. Sci. USA 104, 15988–15993 (2007).

    Article  ADS  Google Scholar 

  21. Trepat, X. et al. Physical forces during collective cell migration. Nature Phys. 5, 426–430 (2009).

    Article  ADS  Google Scholar 

  22. Meghana, C. et al. Integrin adhesion drives the emergent polarization of active cytoskeletal stresses to pattern cell delamination. Proc. Natl Acad. Sci. USA 108, 9107–9112 (2011).

    Article  ADS  Google Scholar 

  23. Cochet-Escartin, O., Ranft, J., Silberzan, P. & Marcq, P. Border forces and friction control epithelial closure dynamics. Biophys. J. 106, 65–73 (2014).

    Article  ADS  Google Scholar 

  24. Serra-Picamal, X. et al. Mechanical waves during tissue expansion. Nature Phys. 8, 628–634 (2012).

    Article  ADS  Google Scholar 

  25. Tan, J. L. et al. Cells lying on a bed of microneedles: An approach to isolate mechanical force. Proc. Natl Acad. Sci. USA 100, 1484–1489 (2003).

    Article  ADS  Google Scholar 

  26. Saez, A. et al. Traction forces exerted by epithelial cell sheets. J. Phys. Condens. Matter 22, 194199 (2010).

    Article  Google Scholar 

  27. Reffay, M. et al. Interplay of RhoA and mechanical forces in collective cell migration driven by leader cells. Nature Cell Biol. 16, 217–223 (2014).

    Article  Google Scholar 

  28. Kim, J. H. et al. Propulsion and navigation within the advancing monolayer sheet. Nature Mater. 12, 856–863 (2013).

    Article  ADS  Google Scholar 

  29. Vedula, S. R. K. et al. Emerging modes of collective cell migration induced by geometrical constraints. Proc. Natl Acad. Sci. USA 109, 12974–12979 (2012).

    Article  ADS  Google Scholar 

  30. Vedula, S. R. K. et al. Epithelial bridges maintain tissue integrity during collective cell migration. Nature Mater. 13, 87–96 (2013).

    Article  ADS  Google Scholar 

  31. Dembo, M. & Wang, Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).

    Article  ADS  Google Scholar 

  32. Wang, N. et al. Cell prestress I stiffness and prestress are closely associated in adherent contractile cells. Am. J. Physiol. Cell Physiol. 282, C606–C616 (2002).

    Article  Google Scholar 

  33. Bastounis, E. et al. Both contractile axial and lateral traction force dynamics drive amoeboid cell motility. J. Cell Biol. 204, 1045–1061 (2014).

    Article  Google Scholar 

  34. Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    Article  Google Scholar 

  35. Saez, A., Ghibaudo, M., Buguin, A., Silberzan, P. & Ladoux, B. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc. Natl Acad. Sci. USA 104, 8281–8286 (2007).

    Article  ADS  Google Scholar 

  36. Ng, M. R., Besser, A., Danuser, G. & Brugge, J. S. Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility. J. Cell Biol. 199, 545–563 (2012).

    Article  Google Scholar 

  37. Chen, H. H. & Brodland, G. W. Cell-level finite element studies of viscous cells in planar aggregates. J. Biomech. Eng. 122, 394–401 (2000).

    Article  Google Scholar 

  38. Brodland, G. W., Viens, D. & Veldhuis, J. H. A new cell-based FE model for the mechanics of embryonic epithelia. Comput. Methods Biomech. Biomed. Eng. 10, 121–128 (2007).

    Article  Google Scholar 

  39. Reinhart-King, C. A., Dembo, M. & Hammer, D. A. Cell–cell mechanical communication through compliant substrates. Biophys. J. 95, 6044–6051 (2008).

    Article  ADS  Google Scholar 

  40. Angelini, T. E., Hannezo, E., Trepat, X., Fredberg, J. J. & Weitz, D. A. Cell migration driven by cooperative substrate deformation patterns. Phys. Rev. Lett. 104, 168104 (2010).

    Article  ADS  Google Scholar 

  41. Plotnikov, S. V., Pasapera, A. M., Sabass, B. & Waterman, C. M. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151, 1513–1527 (2012).

    Article  Google Scholar 

  42. Roca-Cusachs, P., Sunyer, R. & Trepat, X. Mechanical guidance of cell migration: Lessons from chemotaxis. Curr. Opin. Cell Biol. 25, 543–549 (2013).

    Article  Google Scholar 

  43. Behrndt, M. et al. Forces driving epithelial spreading in zebrafish gastrulation. Science 338, 257–260 (2012).

    Article  ADS  Google Scholar 

  44. Fernandez-Gonzalez, R. & Zallen, J. A. Wounded cells drive rapid epidermal repair in the early Drosophila embryo. Mol. Biol. Cell 24, 3227–3237 (2013).

    Article  Google Scholar 

  45. Yeung, T. et al. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskeleton 60, 24–34 (2005).

    Article  Google Scholar 

  46. Colombelli, J., Grill, S. W. & Stelzer, E. H. K. Ultraviolet diffraction limited nanosurgery of live biological tissues. Rev. Sci. Instrum. 75, 472–478 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Bintanel and F. Margadant for technical assistance and P. Roca-Cusachs and members of the Trepat laboratory for discussions. This research was supported by Fondation pour la Recherche Médicale (E.A.), the Spanish Ministry for Economy and Competitiveness (BFU2012-38146 to X.T., Juan de la Cierva Fellowship JCI-2012-15123 to V.C.), the European Research Council (Grant Agreement 242993, X.T.), the Agence Nationale de la Recherche (ANR 2010 BLAN 1515, B.L.), the Institut Universitaire de France (B.L.), the Human Frontier Science Program (grant RGP0040/2012, B.L.), the Mechanobiology Institute of Singapore (B.L.), and the Natural Sciences and Engineering Research Council of Canada (NSERC, J.H.V. and G.W.B.).

Author information

Authors and Affiliations

Authors

Contributions

A.B., E.A., J.C., B.L. and X.T. designed experiments; A.B. and E.A. performed experiments; A.B. analysed experimental data; A.B., V.C. and J.J.M. developed computational tools for data and stress analysis; M.G. analysed micropillar data; J.C. contributed technology; V.C., J.H.V. and G.W.B. built computational models and performed simulations; A.B., E.A., V.C., J.J.M., G.W.B., B.L. and X.T. wrote the manuscript; all authors discussed and interpreted results and commented on the manuscript; B.L. and X.T. conceived and supervised the project.

Corresponding authors

Correspondence to Benoit Ladoux or Xavier Trepat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3257 kb)

Supplementary Movie

Supplementary Movie 1 (MOV 3373 kb)

Supplementary Movie

Supplementary Movie 2 (MOV 4723 kb)

Supplementary Movie

Supplementary Movie 3 (MOV 3200 kb)

Supplementary Movie

Supplementary Movie 4 (MOV 4787 kb)

Supplementary Movie

Supplementary Movie 5 (MOV 905 kb)

Supplementary Movie

Supplementary Movie 6 (MOV 4248 kb)

Supplementary Movie

Supplementary Movie 7 (MOV 372 kb)

Supplementary Movie

Supplementary Movie 8 (MOV 524 kb)

Supplementary Movie

Supplementary Movie 9 (MOV 966 kb)

Supplementary Movie

Supplementary Movie 10 (MOV 547 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brugués, A., Anon, E., Conte, V. et al. Forces driving epithelial wound healing. Nature Phys 10, 683–690 (2014). https://doi.org/10.1038/nphys3040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3040

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing