Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer

Abstract

Nanotechnology has tremendous potential to contribute to cancer immunotherapy. The ‘in situ vaccination’ immunotherapy strategy directly manipulates identified tumours to overcome local tumour-mediated immunosuppression and subsequently stimulates systemic antitumour immunity to treat metastases. We show that inhalation of self-assembling virus-like nanoparticles from cowpea mosaic virus (CPMV) reduces established B16F10 lung melanoma and simultaneously generates potent systemic antitumour immunity against poorly immunogenic B16F10 in the skin. Full efficacy required Il-12, Ifn-γ, adaptive immunity and neutrophils. Inhaled CPMV nanoparticles were rapidly taken up by and activated neutrophils in the tumour microenvironment as an important part of the antitumour immune response. CPMV also exhibited clear treatment efficacy and systemic antitumour immunity in ovarian, colon, and breast tumour models in multiple anatomic locations. CPMV nanoparticles are stable, nontoxic, modifiable with drugs and antigens, and their nanomanufacture is highly scalable. These properties, combined with their inherent immunogenicity and demonstrated efficacy against a poorly immunogenic tumour, make CPMV an attractive and novel immunotherapy against metastatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: eCPMV nanoparticles are inherently immuonogenic.
Figure 2: eCPMV inhalation induces dramatic changes in lung immune cell composition and cytokine/chemokine milieu in mice bearing B16F10 lung tumours.
Figure 3: eCPMV inhalation reduces formation of B16F10 metastatic-like lung tumours.
Figure 4: eCPMV treatment efficacy in B16F10 lung model is immune-mediated.
Figure 5: eCPMV immunotherapy is successful in metastatic breast, colon, and ovarian carcinoma models.
Figure 6: eCPMV induces systemic, durable antitumour immunity.

Similar content being viewed by others

References

  1. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  Google Scholar 

  2. Kershaw, M. H., Westwood, J. A. & Darcy, P. K. Gene-engineered T cells for cancer therapy. Nat. Rev. Cancer 13, 525–541 (2013).

    Article  CAS  Google Scholar 

  3. Ali, O. A. et al. Identification of immune factors regulating antitumor immunity using polymeric vaccines with multiple adjuvants. Cancer Res. 74, 1670–1681 (2014).

    Article  CAS  Google Scholar 

  4. Callahan, M. K., Postow, M. A. & Wolchok, J. D. CTLA-4 and PD-1 pathway blockade: combinations in the clinic. Front. Oncol. 4, ( 2015).

  5. Winograd, R. et al. Induction of T cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol. Res. 3, 399–411 (2015).

    Article  CAS  Google Scholar 

  6. Robert, C. et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N. Engl. J. Med. 364, 2517–2526 (2011).

    Article  CAS  Google Scholar 

  7. Andtbacka, R. H. I. et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 33, 2780–2788 (2015).

    Article  CAS  Google Scholar 

  8. Corrales, L. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 11, 1018–1030 (2015).

    Article  CAS  Google Scholar 

  9. Sheen, M. R., Lizotte, P. H., Toraya-Brown, S. & Fiering, S. Stimulating antitumor immunity with nanoparticles. WIREs Nanomed. Nanobiotechnol. 6, 496–505 (2014).

    Article  CAS  Google Scholar 

  10. Halperin, S. A. et al. Comparison of safety and immunogenicity of two doses of investigational hepatitis B virus surface antigen co-administered with an immunostimulatory phosphorothioate oligodeoxyribonucleotide and three doses of a licensed hepatitis B vaccine in healthy adults 18–55 years of age. Vaccine 30, 2556–2563 (2012).

    Article  CAS  Google Scholar 

  11. Huber, B. et al. A chimeric 18L1-45RG1 virus-like particle vaccine cross-protects against oncogenic alpha-7 human papillomavirus types. PLoS ONE 10, e0120152 (2015).

    Article  Google Scholar 

  12. Rynda-Apple, A., Patterson, D. P. & Douglas, T. Virus-like particles as antigenic nanomaterials for inducing protective immune responses in the lung. Nanomed. 9, 1857–1868 (2014).

    Article  CAS  Google Scholar 

  13. Rynda-Apple, A. et al. Virus-like particle-induced protection against MRSA pneumonia is dependent on IL-13 and enhancement of phagocyte function. Am. J. Pathol. 181, 196–210 (2012).

    Article  CAS  Google Scholar 

  14. Wiley, J. A. et al. Inducible bronchus-associated lymphoid tissue elicited by a protein cage nanoparticle enhances protection in mice against diverse respiratory viruses. PLoS ONE 4, e7142 (2009).

    Article  Google Scholar 

  15. Patterson, D. P., Rynda-Apple, A., Harmsen, A. L., Harmsen, A. G. & Douglas, T. Biomimetic antigenic nanoparticles elicit controlled protective immune response to influenza. ACS Nano 7, 3036–3044 (2013).

    Article  CAS  Google Scholar 

  16. Richert, L. E. et al. CD11c+ cells primed with unrelated antigens facilitate an accelerated immune response to influenza virus in mice. Eur. J. Immunol. 44, 397–408 (2014).

    Article  CAS  Google Scholar 

  17. Saunders, K., Sainsbury, F. & Lomonossoff, G. P. Efficient generation of cowpea mosaicvirus empty virus-like particles by the proteolytic processing of precursors in insect cells and plants. Virology 393, 329–337 (2009).

    Article  CAS  Google Scholar 

  18. Aljabali, A. A. A., Shukla, S., Lomonossoff, G. P., Steinmetz, N. F. & Evans, D. J. CPMV-DOX delivers. Mol. Pharm. 10, 3–10 (2013).

    Article  CAS  Google Scholar 

  19. Yildiz, I., Lee, K. L., Chen, K., Shukla, S. & Steinmetz, N. F. Infusion of imaging and therapeutic molecules into the plant virus-based carrier cowpea mosaic virus: Cargo-loading and delivery. J. Controlled Release 172, 568–578 (2013).

    Article  CAS  Google Scholar 

  20. Costantini, C. et al. Neutrophil activation and survival are modulated by interaction with NK cells. Int. Immunol. 22, 827-838 (2010).

    Article  CAS  Google Scholar 

  21. Gabrilovich, D. I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    Article  CAS  Google Scholar 

  22. Fridlender, Z. G. et al. Polarization of tumor-associated neutrophil (TAN) phenotype by TGF-β: ‘N1’ versus ‘N2’ TAN. Cancer Cell 16, 183–194 (2009).

    Article  CAS  Google Scholar 

  23. Mantovani, A., Cassatella, M. A., Costantini, C. & Jaillon, S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat. Rev. Immunol. 11, 519–531 (2011).

    Article  CAS  Google Scholar 

  24. Zhu, M.-L., Nagavalli, A. & Su, M. A. Aire deficiency promotes TRP-1–specific immune rejection of melanoma. Cancer Res. 73, 2104–2116 (2013).

    Article  CAS  Google Scholar 

  25. Conejo-Garcia, J. R. et al. Tumor-infiltrating dendritic cell precursors recruited by a β-defensin contribute to vasculogenesis under the influence of Vegf-A. Nature Med. 10, 950–958 (2004).

    Article  CAS  Google Scholar 

  26. Lebel, M.-È. et al. Nanoparticle adjuvant sensing by TLR7 enhances CD8+ T cell–mediated protection from listeria monocytogenes infection. J. Immunol. 192, 1071–1078 (2014).

    Article  CAS  Google Scholar 

  27. Link, A. et al. Innate immunity mediates follicular transport of particulate but not soluble protein antigen. J. Immunol. 188, 3724–3733 (2012).

    Article  CAS  Google Scholar 

  28. Wu, G. J. & Bruening, G. Two proteins from cowpea mosaic virus. Virology 46, 596–612 (1971).

    Article  CAS  Google Scholar 

  29. Steinmetz, N. F., Cho, C.-F., Ablack, A., Lewis, J. D. & Manchester, M. Cowpea mosaic virus nanoparticles target surface vimentin on cancer cells. Nanomed. 6, 351–364 (2011).

    Article  CAS  Google Scholar 

  30. Satelli, A. & Li, S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell. Mol. Life Sci. 68, 3033–3046 (2011).

    Article  CAS  Google Scholar 

  31. Gonzalez, M. J., Plummer, E. M., Rae, C. S. & Manchester, M. Interaction of cowpea mosaic virus (CPMV) nanoparticles with antigen presenting cells in vitro and in vivo. PLoS ONE 4, e7981 (2009).

    Article  Google Scholar 

  32. Jablonska, J., Leschner, S., Westphal, K., Lienenklaus, S. & Weiss, S. Neutrophils responsive to endogenous IFN-β regulate tumor angiogenesis and growth in a mouse tumor model. J. Clin. Invest. 120, 1151–1164 (2010).

    Article  CAS  Google Scholar 

  33. Kuang, D.-M. et al. Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J. Hepatol. 54, 948–955 (2011).

    Article  CAS  Google Scholar 

  34. Pekarek, L. A., Starr, B. A., Toledano, A. Y. & Schreiber, H. Inhibition of tumor growth by elimination of granulocytes. J. Exp. Med. 181, 435–440 (1995).

    Article  CAS  Google Scholar 

  35. Wislez, M. et al. Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma role in tumor progression and death. Cancer Res. 63, 1405–1412 (2003).

    CAS  Google Scholar 

  36. Abdallah, D. S. A., Egan, C. E., Butcher, B. A. & Denkers, E. Y. Mouse neutrophils are professional antigen-presenting cells programmed to instruct Th1 and Th17 T-cell differentiation. Int. Immunol. 23, 317–326 (2011).

    Article  Google Scholar 

  37. van Gisbergen, K. P. J. M., Sanchez-Hernandez, M., Geijtenbeek, T. B. H. & van Kooyk, Y. Neutrophils mediate immune modulation of dendritic cells through glycosylation-dependent interactions between Mac-1 and DC-SIGN. J. Exp. Med. 201, 1281–1292 (2005).

    Article  CAS  Google Scholar 

  38. Beauvillain, C. et al. Neutrophils efficiently cross-prime naive T cells in vivo. Blood 110, 2965–2973 (2007).

    Article  CAS  Google Scholar 

  39. Pelletier, M. et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood 115, 335–343 (2010).

    Article  CAS  Google Scholar 

  40. Clancy-Thompson, E. et al. Peptide vaccination in montanide adjuvant induces and GM-CSF increases CXCR3 and cutaneous lymphocyte antigen expression by tumor antigen–specific CD8 T cells. Cancer Immunol. Res. 1, 332–339 (2013).

    Article  CAS  Google Scholar 

  41. Baird, J. R. et al. Immune-mediated regression of established B16F10 melanoma by intratumoral injection of attenuated toxoplasma gondii protects against rechallenge. J. Immunol. 190, 469–478 (2013).

    Article  CAS  Google Scholar 

  42. Caramori, G., Adcock, I. M., Di Stefano, A. & Chung, K. F. Cytokine inhibition in the treatment of COPD. Int. J. Chron. Obstruct. Pulmon. Dis. 9, 397–412 (2014).

    Google Scholar 

  43. Lizotte, P. H. et al. Attenuated Listeria monocytogenes reprograms M2-polarized tumor-associated macrophages in ovarian cancer leading to iNOS-mediated tumor cell lysis. Oncoimmunology 3, ( 2014).

    Article  Google Scholar 

  44. Baird, J. R. et al. Avirulent toxoplasma gondii generates therapeutic antitumor immunity by reversing immunosuppression in the ovarian cancer microenvironment. Cancer Res. 73, 3842–3851 (2013).

    Article  CAS  Google Scholar 

  45. Scarlett, U. K. et al. In situ stimulation of CD40 and toll-like receptor 3 transforms ovarian cancer–infiltrating dendritic cells from immunosuppressive to immunostimulatory cells. Cancer Res. 69, 7329–7337 (2009).

    Article  CAS  Google Scholar 

  46. Hart, K., Byrne, K., Molloy, M., Usherwood, E. & Berwin, B. IL-10 immunomodulation of myeloid cells regulates a murine model of ovarian cancer. T Cell Biol. 2, 29 (2011).

    Google Scholar 

  47. Sainsbury, F. et al. Genetic engineering and characterisation of Cowpea mosaic virus empty virus-like particles. Methods Mol Biol Clifton NJ. 1108, 139–153 (2014).

    Article  CAS  Google Scholar 

  48. Lizotte, P. H., et al. Attenuated Listeria monocytogenes reprograms M2-polarized tumour-associated macrophages in ovarian cancer leading to iNOS-mediated tumour cell lysis. Oncoimmunology 3, e28926 (2014)

    Article  Google Scholar 

  49. Pulaski, B. A. & Ostrand-Rosenberg, S. in Current Protocols in Immunology (eds Cooligan, J. E. et al.) 39:20.2:20.2.1–20.2.16 (John Wiley & Sons, 2001); http://onlinelibrary.wiley.com/doi/10.1002/0471142735.im2002s39/abstract.

Download references

Acknowledgements

George P. Lomonossoff (John Innes Centre, UK) is thanked for providing the pEAQexpress-VP60-24K plasmid. We thank the following for their assistance: Zachary Parker; the lab of David Mullins; the lab of Brent Berwin; the Immune Monitoring Lab and DartLab at the Geisel School of Medicine at Dartmouth, particularly Gary Ward and John DeLong; the Dartmouth Transgenic and Genetic shared resource; the Dartmouth Hitchcock Medical Center pathology department; the Irradiation, Pre-clinical Imaging, and Microscopy (IPIM) and Genomics/Molecular Biology (GMB) shared resources at the Norris Cotton Cancer Center. Shared resources at Dartmouth are made possible through generous Centers of Biomedical Research Excellence support. Work was supported by Dartmouth Immunobiology of Myeloid and Lymphoid Cells National Institutes of Health Training Grant 5T32AI007363–22 (P.H.L.), Case Western Reserve University Cardiovascular Research National Institutes of Health Training Grant T32 HL105338 (A.M.W.), National Science Foundation CMMI 1333651 (N.F.S.), Dartmouth Center of Nanotechnology Excellence NIH 1 U54 CA151662 (S.F.), Center for Molecular, Cellular, and Translational Immunological Research NIGMS 1P30RR032136–01 (S.F.), and Norris Cotton Cancer Center P30 CA023108-27 (S.F.).

Author information

Authors and Affiliations

Authors

Contributions

P.H.L., N.F.S., and S.F. conceived and designed the experiments, and wrote the manuscript. P.H.L., A.M.W., P.R., M.R.S., and J.F. performed the experiments. M.R.S. was responsible for Supplementary Fig. 4. P.R. was responsible for Supplementary Fig. 6. A.M.W. was responsible for Supplementary Fig. 8. P.H.L. performed all other experiments and analysed the data. J.F. assisted with in vivo work. All authors commented on the manuscript.

Corresponding authors

Correspondence to N. F. Steinmetz or S. Fiering.

Ethics declarations

Competing interests

The authors have a patent pending for the immunotherapeutic use of the eCPMV nanoparticle.

Supplementary information

Supplementary information

Supplementary information (PDF 757 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizotte, P., Wen, A., Sheen, M. et al. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nature Nanotech 11, 295–303 (2016). https://doi.org/10.1038/nnano.2015.292

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2015.292

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing