Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Understanding amyloid aggregation by statistical analysis of atomic force microscopy images

Abstract

The aggregation of proteins is central to many aspects of daily life, including food processing, blood coagulation, eye cataract formation disease and prion-related neurodegenerative infections1,2,3,4,5. However, the physical mechanisms responsible for amyloidosis—the irreversible fibril formation of various proteins that is linked to disorders such as Alzheimer's, Creutzfeldt–Jakob and Huntington's diseases—have not yet been fully elucidated6,7,8,9. Here, we show that different stages of amyloid aggregation can be examined by performing a statistical polymer physics analysis of single-molecule atomic force microscopy images of heat-denatured β-lactoglobulin fibrils. The atomic force microscopy analysis, supported by theoretical arguments, reveals that the fibrils have a multistranded helical shape with twisted ribbon-like structures. Our results also indicate a possible general model for amyloid fibril assembly and illustrate the potential of this approach for investigating fibrillar systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AFM imaging, contour length and maximum height distribution of β-lactoglobulin fibrils.
Figure 2: AFM imaging of fibril splitting and thinning.
Figure 3: Different periods of β-lactoglobulin fibrils.
Figure 4: Linear relation between the number of filaments and persistence length and periodicity of β-lactoglobulin fibrils.

Similar content being viewed by others

References

  1. Caughey, B. & Lansbury, P. T. Protofibrils, pores, fibrils and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298 (2003).

    Article  CAS  Google Scholar 

  2. Stradner, A. et al. Equilibrium cluster formation in concentrated protein solutions and colloids. Nature 432, 492–495 (2004).

    Article  CAS  Google Scholar 

  3. Mezzenga, R., Schurtenberger, P., Burbidge, A. & Michel, M. Understanding foods as soft materials. Nature Mater. 4, 729–740 (2005).

    Article  CAS  Google Scholar 

  4. Selkoe, D. J. Folding proteins in fatal ways. Nature 426, 900–904 (2003).

    Article  CAS  Google Scholar 

  5. Chiti, F. & Dobson, C. M. Amyloid formation by globular proteins under native conditions. Nature Chem. Biol. 5, 15–22 (2009).

    Article  CAS  Google Scholar 

  6. Knowles, T. P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007).

    Article  CAS  Google Scholar 

  7. Nelson, R. et al. Structure of the cross-beta spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    Article  CAS  Google Scholar 

  8. Chiti, F. & Dobson, C. M. Protein misfolding, functional amyloid and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    Article  CAS  Google Scholar 

  9. Dobson, C. M. Protein folding and misfolding. Nature 426, 884–890 (2003).

    Article  CAS  Google Scholar 

  10. Graumann, P. L. Cytoskeletal elements in bacteria. Annu. Rev. Microbiol. 61, 589–618 (2007).

    Article  CAS  Google Scholar 

  11. Kueh, H. Y. & Mitchison, T. J. Structural plasticity in actin and tubulin polymer dynamics. Science 325, 960–963 (2009).

    Article  CAS  Google Scholar 

  12. Pearce, F. G., Mackintosh, S. H. & Gerrard, J. A. Formation of amyloid-like fibrils by ovalbumin and related proteins under conditions relevant to food processing. J. Agric. Food Chem. 55, 318–322 (2007).

    Article  CAS  Google Scholar 

  13. Kavanagh, G. M., Clark, A. H. & Ross-Murphy, S. B. Heat-induced gelation of globular proteins: part 3. Molecular studies on low pH beta-lactoglobulin gels. Int. J. Biol. Macromol. 28, 41–50 (2000).

    Article  CAS  Google Scholar 

  14. Bolder, S. G., Sagis, L. M., Venema, P. & van der Linden, E. Effect of stirring and seeding on whey protein fibril formation. J. Agric. Food Chem. 55, 5661–5669 (2007).

    Article  CAS  Google Scholar 

  15. Gosal, W. S., Clark, A. H. & Ross-Murphy, S. B. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure. Biomacromolecules 5, 2408–2419 (2004).

    Article  CAS  Google Scholar 

  16. Jung, J. M., Savin, G., Pouzot, M., Schmitt, C. & Mezzenga, R. Structure of heat-induced beta-lactoglobulin aggregates and their complexes with sodium-dodecyl sulfate. Biomacromolecules 9, 2477–2486 (2008).

    Article  CAS  Google Scholar 

  17. Gosal, W. S., Clark, A. H., Pudney, P. D. A. & Ross-Murphy, S. B. Novel amyloid fibrillar networks derived from a globular protein: beta-lactoglobulin. Langmuir 18, 7174–7181 (2002).

    Article  CAS  Google Scholar 

  18. Veerman, C., Ruis, H., Sagis, L. M. & van der Linden, E. Effect of electrostatic interactions on the percolation concentration of fibrillar beta-lactoglobulin gels. Biomacromolecules 3, 869–873 (2002).

    Article  CAS  Google Scholar 

  19. Arnaudov, L. N., de Vries, R., Ippel, H. & van Mierlo, C. P. Multiple steps during the formation of beta-lactoglobulin fibrils. Biomacromolecules 4, 1614–1622 (2003).

    Article  CAS  Google Scholar 

  20. Bromley, E. H., Krebs, M. R. & Donald, A. M. Aggregation across the length-scales in beta-lactoglobulin. Faraday Discuss. 128, 13–27 (2005).

    Article  CAS  Google Scholar 

  21. Sagis, L. M., Veerman, C. & van der Linden, E. Mesoscopic properties of semiflexible amyloid fibrils. Langmuir 20, 924–927 (2004).

    Article  CAS  Google Scholar 

  22. Arnaudov, L. N. & de Vries, R. Strong impact of ionic strength on the kinetics of fibrilar aggregation of bovine beta-lactoglobulin. Biomacromolecules 7, 3490–3498 (2006).

    Article  CAS  Google Scholar 

  23. Nilsson, M. R. Techniques to study amyloid fibril formation in vitro. Methods 34, 151–160 (2004).

    Article  CAS  Google Scholar 

  24. Lashuel, H. A. & Wall, J. S. Molecular electron microscopy approaches to elucidating the mechanisms of protein fibrillogenesis. Methods Mol. Biol. 299, 81–101 (2005).

    CAS  Google Scholar 

  25. Ikeda, S. & Morris, V. J. Fine-stranded and particulate aggregates of heat-denatured whey proteins visualized by atomic force microscopy. Biomacromolecules 3, 382–389 (2002).

    Article  CAS  Google Scholar 

  26. Chamberlain, A. K. et al. Ultrastructural organization of amyloid fibrils by atomic force microscopy. Biophys. J. 79, 3282–3293 (2000).

    Article  CAS  Google Scholar 

  27. Khurana, R. et al. A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy. Biophys. J. 85, 1135–1144 (2003).

    Article  CAS  Google Scholar 

  28. Witz, G., Rechendorff, K., Adamcik, J. & Dietler, G. Conformation of circular DNA in two dimensions. Phys. Rev. Lett. 101, 148103 (2008).

    Article  Google Scholar 

  29. Manning, G. S. Correlation of polymer persistence length with Euler buckling. Phys. Rev. A 34, 4467–4468 (1986).

    Article  CAS  Google Scholar 

  30. Aggeli, A. et al. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide beta-sheet tapes, ribbons, fibrils and fibers. Proc. Natl Acad. Sci. USA 98, 11857–11862 (2001).

    Article  CAS  Google Scholar 

  31. Paravastu, A. K., Leapman, R. D., Yau, W. M. & Tycko, R. Molecular structural basis for polymorphism in Alzheimer's beta-amyloid fibrils. Proc. Natl Acad. Sci. USA 105, 18349–18354 (2008).

    Article  CAS  Google Scholar 

  32. Jung, J. M. & Mezzenga, R. Liquid crystalline phase behavior of protein fibers in water: experiments versus theory. Langmuir 26, 504–514 (2010).

    Article  CAS  Google Scholar 

  33. Marek, J. et al. Interactive measurement and characterization of DNA molecules by analysis of AFM images. Cytometry A 63, 87–93 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank G. Witz and J. Vieira for helpful discussions and assistance during the experiments.

Author information

Authors and Affiliations

Authors

Contributions

J.A. performed AFM imaging, analysed data and wrote the paper. J.M.J. prepared the fibrils. J.F. ran coarse-grain molecular dynamics simulations of the fibrils and analysed data. P.D.L.R and G.D. analysed data and wrote the paper. R.M designed the study, analysed the data and wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Giovanni Dietler or Raffaele Mezzenga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 565 kb)

Supplementary information

Supplementary movie 1 (MPG 3206 kb)

Supplementary information

Supplementary movie 2 (MPG 3188 kb)

Supplementary information

Supplementary movie 3 (MPG 2662 kb)

Supplementary information

Supplementary movie 4 (MPG 3522 kb)

Supplementary information

Supplementary movie 5 (MPG 5266 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamcik, J., Jung, JM., Flakowski, J. et al. Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nature Nanotech 5, 423–428 (2010). https://doi.org/10.1038/nnano.2010.59

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.59

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research