Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An index for characterization of nanomaterials in biological systems

Abstract

In a physiological environment, nanoparticles selectively absorb proteins to form ‘nanoparticle–protein coronas’1,2,3,4,5, a process governed by molecular interactions between chemical groups on the nanoparticle surfaces and the amino-acid residues of the proteins6,7,8. Here, we propose a biological surface adsorption index to characterize these interactions by quantifying the competitive adsorption of a set of small molecule probes onto the nanoparticles. The adsorption properties of nanomaterials are assumed to be governed by Coulomb forces, London dispersion, hydrogen-bond acidity and basicity, polarizability and lone-pair electrons. Adsorption coefficients of the probe compounds were measured and used to create a set of nanodescriptors representing the contributions and relative strengths of each molecular interaction. The method successfully predicted the adsorption of various small molecules onto carbon nanotubes, and the nanodescriptors were also measured for 12 other nanomaterials. The biological surface adsorption index nanodescriptors can be used to develop pharmacokinetic and safety assessment models for nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the competitive adsorption of small molecules and proteins onto the surface adsorption sites of nanoparticles.
Figure 2: Relative molecular interaction strengths at the nano–water interface.
Figure 3: Predictive model performance and validation for MWCNTs.
Figure 4: Radar compass plot comparing the five nanodescriptors of 12 different nanomaterials.

Similar content being viewed by others

References

  1. Lynch, I., Dawson, K. A. & Linse, S. Detecting cryptic epitopes created by nanoparticles. Sci. STKE 327, 14 (2006).

    Google Scholar 

  2. Cedervall, T. et al. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl Acad. Sci. USA 104, 2050–2055 (2007).

    Article  CAS  Google Scholar 

  3. Lynch, I. & Dawson, K. A. Protein–nanoparticle interactions. Nano Today 3, 40–47 (2008).

    Article  CAS  Google Scholar 

  4. Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA 105, 14265–14270 (2008).

    Article  CAS  Google Scholar 

  5. Hellstrand, E. et al. Complete high-density lipoproteins in nanoparticle corona. FEBS J. 276, 3372–3381 (2009).

    Article  CAS  Google Scholar 

  6. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nature Mater. 8, 543–557 (2009).

    Article  CAS  Google Scholar 

  7. Puzyn, T., Leszczynska, D. & Leszczynski, J. Toward the development of ‘Nano-QSARs’: advances and challenges. Small 5, 2494–2509 (2009).

    Article  CAS  Google Scholar 

  8. Aillon, K. L., Xie, Y., El-Gendy, N., Berkland, C. J. & Forrest, M. L. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 61, 457–466 (2009).

    Article  CAS  Google Scholar 

  9. Yang, K. & Xing, B. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem. Rev. doi: 10.1021/cr100059s (2010).

  10. Aggarwal, P., Hall, J. B., McLeland, C. B., Dobrovolskaia, M. A. & McNeil, S. E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 61, 428–437 (2009).

    Article  CAS  Google Scholar 

  11. Patil, S., Sandberg, A., Heckert, E., Self, W. & Seal, S. Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomaterials 28, 4600–4607 (2007).

    Article  CAS  Google Scholar 

  12. Simon, P. & Joner, E. Conceivable interactions of biopersistent nanoparticles with food matrix and living systems following from their physicochemical properties. J. Food Nutr. Res. 47, 51–59 (2008).

    CAS  Google Scholar 

  13. Stone, A. J. (ed.) The Theory of Intermolecular Forces (Oxford Univ. Press, 1996).

    Google Scholar 

  14. Karelson, M. (ed.) Molecular Descriptors in QSAR/QSPR (John Wiley & Sons, 2000).

    Google Scholar 

  15. Abraham, M. H. Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 22, 73–83 (1993).

    Article  CAS  Google Scholar 

  16. Hansch, C. & Fujita, T. A method for the correlation of biological activity and chemical structure. J. Am. Chem. Soc. 86, 1616–1626 (1964).

    Article  CAS  Google Scholar 

  17. Hansch, C. Quantitative structure—activity relationships and the unnamed science. Acc. Chem. Res. 26, 147–153 (1993).

    Article  CAS  Google Scholar 

  18. Giaginis, C. & Tsantili-Kakoulidou, A. Alternative measures of lipophilicity: from octanol–water partitioning to IAM retention. J. Pharm. Sci. 97, 2984–3004 (2008).

    Article  CAS  Google Scholar 

  19. Chen, W., Duan, L. & Zhu, D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environ. Sci. Technol. 41, 8295–8300 (2007).

    Article  CAS  Google Scholar 

  20. Arkin, M. R. et al. Rates of DNA-mediated electron transfer between metallointercalators. Science 273, 475–480 (1996).

    Article  CAS  Google Scholar 

  21. Gramatica, P. Principles of QSAR models validation: internal and external. QSAR Comb. Sci. 26, 694–701 (2007).

    Article  CAS  Google Scholar 

  22. Dearden, J. C., Cronin, M. T. D. & Kaiser, K. L. E. How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR). SAR QSAR Environ. Res. 20, 241–266 (2009).

    Article  CAS  Google Scholar 

  23. Gramatica, P., Giani, E. & Papa, E. Statistical external validation and consensus modeling: a QSPR case study for Koc prediction. J. Mol. Graph. Model. 25, 755–766 (2007).

    Article  CAS  Google Scholar 

  24. Duong, D. D. (ed.) Adsorption Analysis: Equilibria and Kinetics (Imperial College Press, 1998).

    Google Scholar 

  25. Yang, K., Wang, X., Zhu, L. & Xing, B. Competitive sorption of pyrene, phenanthrene and naphthalene on multiwalled carbon nanotubes. Environ. Sci. Technol. 40, 5804–5810 (2006).

    Article  CAS  Google Scholar 

  26. Zhang, S., Shado, T., Bekaroglu, S. S. & Karanfil, T. The impacts of aggregation and surface chemistry of carbon nanotubes on the adsorption of synthetic organic compounds. Environ. Sci. Technol. 43, 5719–5725 (2009).

    Article  CAS  Google Scholar 

  27. Johnson, R. R., Johnson, A. T. & Klein, M. L. The nature of DNA-base—carbon-nanotube interactions. Small 6, 31–34 (2010).

    Article  CAS  Google Scholar 

  28. Xia, X. R., Baynes, R. E., Monteiro-Riviere, N. A. & Riviere, J. E. A system coefficient approach for quantitative assessment of the solvent effects on membrane absorption from chemical mixtures. SAR QSAR Environ. Res. 18, 579–593 (2007).

    Article  CAS  Google Scholar 

  29. Lee, H. A., Leavens, T. L., Mason, S. E., Monteiro-Riviere, N. A. & Riviere, J. E. Comparison of quantum dot biodistribution with a blood-flow-limited physiologically based pharmacokinetic model. Nano Lett. 9, 794–799 (2009).

    Article  CAS  Google Scholar 

  30. Zhang, L. W. & Monteiro-Riviere, N. A. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol. Sci. 110, 138–155 (2009).

    Article  CAS  Google Scholar 

  31. Xia, X. R. et al. A novel in vitro technique for studying percutaneous permeation with a membrane-coated fiber and gas chromatography/mass spectrometry Part I. Performances of the technique and determination of the permeation rates and partition coefficients of chemical mixtures. Pharm. Res. 20, 272–279 (2003).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the USEPA STAR grant no. R833328 and the United States Air Force Office of Scientific Research (USAFOSR) grant no. FA9550-08-1-0182. The authors thank J. Brooks for help in QSAR validation techniques.

Author information

Authors and Affiliations

Authors

Contributions

X.-R.X. conceived, conducted and designed the experiments and analysed the resulting data. N.A.M.-R. initiated the application of this technique to nanomaterial characterization and provided biological context. J.E.R. conceived the BSAI concept and contributed to data analysis and interpretation. All three authors were involved in writing and revising the manuscript.

Corresponding author

Correspondence to Jim E. Riviere.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 917 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, XR., Monteiro-Riviere, N. & Riviere, J. An index for characterization of nanomaterials in biological systems. Nature Nanotech 5, 671–675 (2010). https://doi.org/10.1038/nnano.2010.164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2010.164

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing