Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Progress in the use of microarray technology to study the neurobiology of disease

Abstract

The diverse functions of the brain are mediated by neurons and glia whose phenotype is defined by a dynamically maintained set of gene transcripts, or 'transcriptome'. Large-scale analysis of gene expression in postmortem brain using microarray technology has the potential to elucidate molecular changes that occur in disease states. There are unique challenges associated with studies of postmortem brain, including limited sample sizes and variable clinical phenotypes that are typical of complex disorders. Nevertheless, recent microarray-based studies have implicated both individual dysregulated genes and abnormal patterns of gene expression in brain disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schena, M., Shalon, D., Davis, R.W. & Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  2. Lockhart, D.J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat. Biotechnol. 14, 1675–1680 (1996).

    Article  CAS  Google Scholar 

  3. Cheung, V.G. et al. Making and reading microarrays. Nat. Genet. 21, 15–19 (1999).

    Article  CAS  Google Scholar 

  4. Hoffman, E. et al. Guidelines: Expression profiling - best practices for data generation and interpretation in clinical trials. Nat. Rev. Genet. 5, 229–237 (2004).

    Article  CAS  Google Scholar 

  5. Stuart, J.M., Segal, E., Koller, D. & Kim, S.K. A gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).

    Article  CAS  Google Scholar 

  6. Blalock, E.M. et al. Incipient Alzheimer's disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc. Natl. Acad. Sci. USA 101, 2173–2178 (2004).

    Article  CAS  Google Scholar 

  7. Mirnics, K., Middleton, F.A., Lewis, D.A. & Levitt, P. Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci. 24, 479–486 (2001).

    Article  CAS  Google Scholar 

  8. Mirnics, K. Microarrays in brain research: the good, the bad and the ugly. Nat. Rev. Neurosci. 2, 444–447 (2001).

    Article  CAS  Google Scholar 

  9. Colantuoni, C. et al. Gene expression profiling in postmortem Rett Syndrome brain: differential gene expression and patient classification. Neurobiol. Dis. 8, 847–865 (2001).

    Article  CAS  Google Scholar 

  10. Pongrac, J., Middleton, F.A., Lewis, D.A., Levitt, P. & Mirnics, K. Gene expression profiling with DNA microarrays: advancing our understanding of psychiatric disorders. Neurochem. Res. 27, 1049–1063 (2002).

    Article  CAS  Google Scholar 

  11. Greenbaum, D., Colangelo, C., Williams, K. & Gerstein, M. Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol. 4, 117 (2003).

    Article  PubMed  Google Scholar 

  12. Pierri, J.N., Chaudry, A.S., Woo, T.U. & Lewis, D.A. Alterations in chandelier neuron axon terminals in the prefrontal cortex of schizophrenic subjects. Am. J. Psychiatry 156, 1709–1179 (1999).

    CAS  Google Scholar 

  13. Lewis, D.A. & Levitt, P. Schizophrenia as a disorder of neurodevelopment. Annu. Rev. Neurosci. 25, 409–432 (2002).

    Article  CAS  Google Scholar 

  14. Lewis, D.A. The human brain revisited: opportunities and challenges in postmortem studies of psychiatric disorders. Neuropsychopharmacology 26, 143–154 (2002).

    Article  Google Scholar 

  15. Harrison, P.J. et al. The relative importance of premortem acidosis and postmortem interval for human brain gene expression studies: selective mRNA vulnerability and comparison with their encoded proteins. Neurosci. Lett. 200, 151–154 (1995).

    Article  CAS  Google Scholar 

  16. Quackenbush, J. Microarray data normalization and transformation. Nat. Genet. 32 (Suppl.), 496–501 (2002).

    Article  CAS  Google Scholar 

  17. Smyth, G. & Speed, T. Normalization of cDNA microarray data. Methods 31, 265–273 (2003).

    Article  CAS  Google Scholar 

  18. Tusher, V.G., Tibshirani, R. & Chu, G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA 98, 5116–5121 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Li, C. & Hung Wong, W. Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol. 2, 32.1–32.11 (2001).

    Article  Google Scholar 

  20. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  21. Kerr, M.K. & Churchill, G.A. Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments. Proc. Natl. Acad. Sci. USA 98, 8961–8965 (2001).

    Article  CAS  Google Scholar 

  22. Alizadeh, A.A. et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000).

    Article  CAS  Google Scholar 

  23. Evans, S.J. et al. DNA microarray analysis of functionally discrete human brain regions reveals divergent transcriptional profiles. Neurobiol. Dis. 14, 240–250 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Mukasa, A. et al. Distinction in gene expression profiles of oligodendrogliomas with and without allelic loss of 1p. Oncogene 21, 3961–3968 (2002).

    Article  CAS  Google Scholar 

  25. Mirnics, K., Middleton, F.A., Marquez, A., Lewis, D.A. & Levitt, P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28, 53–67 (2000).

    Article  CAS  Google Scholar 

  26. Hemby, S.E. et al. Gene expression profile for schizophrenia: discrete neuron transcription patterns in the entorhinal cortex. Arch. Gen. Psychiatry 59, 631–640 (2002).

    Article  CAS  Google Scholar 

  27. Middleton, F.A., Mirnics, K., Pierri, J.N., Lewis, D.A. & Levitt, P. Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J. Neurosci. 22, 2718–2729 (2002).

    Article  CAS  Google Scholar 

  28. Vawter, M.P. et al. Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study. Schizophr. Res. 58, 11–20 (2002).

    Article  Google Scholar 

  29. Tkachev, D. et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362, 798–805 (2003).

    Article  CAS  Google Scholar 

  30. Mimmack, M.L. et al. Gene expression analysis in schizophrenia: reproducible up-regulation of several members of the apolipoprotein L family located in a high-susceptibility locus for schizophrenia on chromosome 22. Proc. Natl. Acad. Sci. USA 99, 4680–4685 (2002).

    Article  CAS  Google Scholar 

  31. Hakak, Y. et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl. Acad. Sci. USA 98, 4746–4751 (2001).

    Article  CAS  Google Scholar 

  32. Mirnics, K., Middleton, F.A., Stanwood, G.D., Lewis, D.A. & Levitt, P. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol. Psychiatry 6, 293–301 (2001).

    Article  CAS  Google Scholar 

  33. Chowdari, K.V. et al. Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum. Mol. Genet. 11, 1373–1380 (2002).

    Article  CAS  Google Scholar 

  34. Williams, N.M. et al. Support for RGS4 as a susceptibility gene for schizophrenia. Biol. Psychiatry 55, 192–195 (2004).

    Article  CAS  Google Scholar 

  35. Morris, D.W. et al. Confirming RGS4 as a susceptibility gene for schizophrenia. Am. J. Med. Genet. 125, 50–53 (2004).

    Article  Google Scholar 

  36. Lewohl, J.M. et al. Gene expression in human alcoholism: microarray analysis of frontal cortex. Alcohol Clin. Exp. Res. 24, 1873–1882 (2000).

    Article  CAS  Google Scholar 

  37. Lewohl, J.M., Dodd, P.R., Mayfield, R.D. & Harris, R.A. Application of DNA microarrays to study human alcoholism. J. Biomed. Sci. 8, 28–36 (2001).

    Article  CAS  Google Scholar 

  38. Albertson, D. et al. Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin. J Neurochem. 88, 1211–1219 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Traynor, J., Agarwal, P., Lazzeroni, L. & Francke, U. Gene expression patterns vary in clonal cell cultures from Rett syndrome females with eight different MECP2 mutations. BMC Med. Genet. 3, 12 (2002).

    Article  PubMed  Google Scholar 

  40. Tudor, M., Akbarian, S., Chen, R.Z. & Jaenisch, R. Transcriptional profiling of a mouse model for Rett syndrome reveals subtle transcriptional changes in the brain. Proc. Natl. Acad. Sci. USA 99, 15536–15541 (2002).

    Article  CAS  Google Scholar 

  41. Mycko, M.P., Papoian, R., Boschert, U., Raine, C.S. & Selmaj, K.W. cDNA microarray analysis in multiple sclerosis lesions: detection of genes associated with disease activity. Brain 126, 1048–1057 (2003).

    Article  Google Scholar 

  42. Whitney, L.W. et al. Analysis of gene expression in mutiple sclerosis lesions using cDNA microarrays. Ann. Neurol. 46, 425–428 (1999).

    Article  CAS  Google Scholar 

  43. Whitney, L.W., Ludwin, S.K., McFarland, H.F. & Biddison, W.E. Microarray analysis of gene expression in multiple sclerosis and EAE identifies 5-lipoxygenase as a component of inflammatory lesions. J. Neuroimmunol. 121, 40–48 (2001).

    Article  CAS  Google Scholar 

  44. Lock, C. et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8, 500–508 (2002).

    Article  CAS  Google Scholar 

  45. Marcotte, E.R., Srivastava, L.K. & Quirion, R. cDNA microarray and proteomic approaches in the study of brain diseases: focus on schizophrenia and Alzheimer's disease. Pharmacol. Ther. 100, 63–74 (2003).

    Article  CAS  Google Scholar 

  46. Colangelo, V. et al. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res. 70, 462–473 (2002).

    Article  CAS  Google Scholar 

  47. Loring, J.F., Wen, X., Lee, J.M., Seilhamer, J. & Somogyi, R. A gene expression profile of Alzheimer's disease. DNA Cell. Biol. 20, 683–695 (2001).

    Article  CAS  Google Scholar 

  48. Mufson, E.J., Counts, S.E. & Ginsberg, S.D. Gene expression profiles of cholinergic nucleus basalis neurons in Alzheimer's disease. Neurochem. Res. 27, 1035–1048 (2002).

    Article  CAS  Google Scholar 

  49. Ginsberg, S.D. et al. Predominance of neuronal mRNAs in individual Alzheimer's disease senile plaques. Ann. Neurol. 45, 174–181 (1999).

    Article  CAS  Google Scholar 

  50. Ginsberg, S.D., Hemby, S.E., Lee, V.M., Eberwine, J.H. & Trojanowski, J.Q. Expression profile of transcripts in Alzheimer's disease tangle-bearing CA1 neurons. Ann. Neurol. 48, 77–87 (2000).

    Article  CAS  Google Scholar 

  51. Yao, P.J. et al. Defects in expression of genes related to synaptic vesicle trafficking in frontal cortex of Alzheimer's disease. Neurobiol. Dis. 12, 97–109 (2003).

    Article  CAS  Google Scholar 

  52. Pasinetti, G.M. Use of cDNA microarray in the search for molecular markers involved in the onset of Alzheimer's disease dementia. J. Neurosci. Res. 65, 471–476 (2001).

    Article  CAS  Google Scholar 

  53. Mao, R., Zielke, C.L., Zielke, H.R. & Pevsner, J. Global up-regulation of chromosome 21 gene expression in the developing Down syndrome brain. Genomics 81, 457–467 (2003).

    Article  CAS  Google Scholar 

  54. Pollack, J.R. et al. Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nat. Genet. 23, 41–46 (1999).

    Article  CAS  Google Scholar 

  55. Hirose, Y. et al. Grade II astrocytomas are subgrouped by chromosome aberrations. Cancer Genet. Cytogenet. 142, 1–7 (2003).

    Article  CAS  Google Scholar 

  56. Edgar, R., Domrachev, M. & Lash, A.E. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30, 207–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Brooksbank, C. et al. The European Bioinformatics Institute's data resources. Nucleic Acids Res. 31, 43–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Brazma, A. et al. ArrayExpress—a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 31, 68–71 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Brazma, A. et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat. Genet. 29, 365–371 (2001).

    Article  CAS  Google Scholar 

  60. Causton, H.C. & Game, L. MGED comes of age. Genome Biol. 4, 351 (2003).

    Article  PubMed  Google Scholar 

  61. Mimmack, M.L. & Bahn, S. Quantitative RT-PCR in brain research. Biol. Psychiatry (in press).

  62. Watase, K. & Zoghbi, H.Y. Modelling brain diseases in mice: the challenges of design and analysis. Nat. Rev. Genet. 4, 296–307 (2003).

    Article  CAS  Google Scholar 

  63. Fell, A. The disordered mind. UC Davis Magazine Online 19(1) 2001. (http://www-ucdmag.ucdavis.edu/fall01/feature_1.html).

    Google Scholar 

  64. Torrey, E.F., Webster, M., Knable, M., Johnston, N. & Yolken, R.H. The stanley foundation brain collection and neuropathology consortium. Schizophr. Res. 44, 151–155 (2000).

    Article  CAS  Google Scholar 

  65. Pickett, J. Current investigations in autism brain tissue research. J. Autism Dev. Disord. 31, 521–527 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to N. Varg for critical comments and valuable suggestions regarding the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirnics, K., Pevsner, J. Progress in the use of microarray technology to study the neurobiology of disease. Nat Neurosci 7, 434–439 (2004). https://doi.org/10.1038/nn1230

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1230

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing