Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Presynaptic regulation of quantal size: K+/H+ exchange stimulates vesicular glutamate transport

This article has been updated

Abstract

The amount of neurotransmitter stored in a single synaptic vesicle can determine the size of the postsynaptic response, but the factors that regulate vesicle filling are poorly understood. A proton electrochemical gradient (ΔμH+) generated by the vacuolar H+-ATPase drives the accumulation of classical transmitters into synaptic vesicles. The chemical component of ΔμH+ (ΔpH) has received particular attention for its role in the vesicular transport of cationic transmitters as well as in protein sorting and degradation. Thus, considerable work has addressed the factors that promote ΔpH. However, synaptic vesicle uptake of the principal excitatory transmitter glutamate depends on the electrical component of ΔμH+ (Δψ). We found that rat brain synaptic vesicles express monovalent cation/H+ exchange activity that converts ΔpH into Δψ, and that this promotes synaptic vesicle filling with glutamate. Manipulating presynaptic K+ at a glutamatergic synapse influenced quantal size, indicating that synaptic vesicle K+/H+ exchange regulates glutamate release and synaptic transmission.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synaptic vesicles express a Na+/H+ exchange activity.
Figure 2: Synaptic vesicles lack a detectable K+ channel conductance.
Figure 3: Cation/H+ exchange activity is present on glutamatergic synaptic vesicles and increases Δψ.
Figure 4: Monovalent cations increase glutamate transport into synaptic vesicles.
Figure 5: Cation/H+ exchange stimulates glutamate uptake by increasing Δψ.
Figure 6: Presynaptic K+ regulates mEPSC amplitude at the calyx of Held.
Figure 7: ΔpH-driven 22Na+ uptake into glutamatergic synaptic vesicles is sensitive to EIPA.

Similar content being viewed by others

Change history

  • 13 October 2011

    In the version of this article initially published online, the composition of the low-sodium and potassium-free NMDG patch clamp solution was omitted and a non-NMDG solution, not used in this work, was given instead. The error has been corrected in the PDF and HTML versions of this article

References

  1. Bredt, D.S. & Nicoll, R.A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Ishikawa, T., Sahara, Y. & Takahashi, T. A single packet of transmitter does not saturate postsynaptic glutamate receptors. Neuron 34, 613–621 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Wu, X.S. et al. The origin of quantal size variation: vesicular glutamate concentration plays a significant role. J. Neurosci. 27, 3046–3056 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Conti, R. & Lisman, J. The high variance of AMPA receptor– and NMDA receptor–mediated responses at single hippocampal synapses: evidence for multiquantal release. Proc. Natl. Acad. Sci. USA 100, 4885–4890 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sargent, P.B., Saviane, C., Nielsen, T.A., DiGregorio, D.A. & Silver, R.A. Rapid vesicular release, quantal variability, and spillover contribute to the precision and reliability of transmission at a glomerular synapse. J. Neurosci. 25, 8173–8187 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Karunanithi, S., Marin, L., Wong, K. & Atwood, H.L. Quantal size and variation determined by vesicle size in normal and mutant Drosophila glutamatergic synapses. J. Neurosci. 22, 10267–10276 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Steinert, J.R. et al. Experience-dependent formation and recruitment of large vesicles from reserve pool. Neuron 50, 723–733 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. De Gois, S. et al. Homeostatic scaling of vesicular glutamate and GABA transporter expression in rat neocortical circuits. J. Neurosci. 25, 7121–7133 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wojcik, S.M. et al. An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. Proc. Natl. Acad. Sci. USA 101, 7158–7163 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moechars, D. et al. Vesicular glutamate transporter VGLUT2 expression levels control quantal size and neuropathic pain. J. Neurosci. 26, 12055–12066 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seal, R.P. et al. Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. Neuron 57, 263–275 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fremeau, R.T. Jr. et al. Vesicular glutamate transporters 1 and 2 target to functionally distinct synaptic release sites. Science 304, 1815–1819 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Daniels, R.W. et al. A single vesicular glutamate transporter is sufficient to fill a synaptic vesicle. Neuron 49, 11–16 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brunk, I. et al. The first luminal domain of vesicular monoamine transporters mediates G protein–dependent regulation of transmitter uptake. J. Biol. Chem. 281, 33373–33385 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Saroussi, S. & Nelson, N. Vacuolar H+-ATPase: an enzyme for all seasons. Pflugers Arch. 457, 581–587 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Johnson, R.G., Carty, S.E. & Scarpa, A. Proton: substrate stoichiometries during active transport of biogenic amines in chromaffin ghosts. J. Biol. Chem. 256, 5773–5780 (1981).

    CAS  PubMed  Google Scholar 

  17. Knoth, J., Zallakian, M. & Njus, D. Stoichiometry of H+-linked dopamine transport in chromaffin granule ghosts. Biochemistry 20, 6625–6629 (1981).

    Article  CAS  PubMed  Google Scholar 

  18. Parsons, S.M. Transport mechanisms in acetylcholine and monoamine storage. FASEB J. 14, 2423–2434 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Johnson, R.G., Pfister, D., Carty, S.E. & Scarpa, A. Biological amine transport in chromaffin ghosts. Coupling to the transmembrane proton and potential gradients. J. Biol. Chem. 254, 10963–10972 (1979).

    CAS  PubMed  Google Scholar 

  20. Maycox, P.R., Deckwerth, T., Hell, J.W. & Jahn, R. Glutamate uptake by brain synaptic vesicles. Energy dependence of transport and functional reconstitution in proteoliposomes. J. Biol. Chem. 263, 15423–15428 (1988).

    CAS  PubMed  Google Scholar 

  21. Tabb, J.S., Kish, P.E., Van Dyke, R. & Ueda, T. Glutamate transport into synaptic vesicles. J. Biol. Chem. 267, 15412–15418 (1992).

    CAS  PubMed  Google Scholar 

  22. Van Dyke, R.W. Proton pump-generated electrochemical gradients in rat liver multivesicular bodies. Quantitation and effects of chloride. J. Biol. Chem. 263, 2603–2611 (1988).

    CAS  PubMed  Google Scholar 

  23. Hartinger, J. & Jahn, R. An anion binding site that regulates the glutamate transporter of synaptic vesicles. J. Biol. Chem. 268, 23122–23127 (1993).

    CAS  PubMed  Google Scholar 

  24. Hnasko, T.S. et al. Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65, 643–656 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schenck, S., Wojcik, S.M., Brose, N. & Takamori, S. A chloride conductance in VGLUT1 underlies maximal glutamate loading into synaptic vesicles. Nat. Neurosci. 12, 156–162 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Chaudhry, F.A., Boulland, J.L., Jenstad, M., Bredahl, M.K. & Edwards, R.H. Pharmacology of neurotransmitter transport into secretory vesicles. Handb. Exp. Pharmacol. 184, 77–106 (2008).

    Article  CAS  Google Scholar 

  27. Brett, C.L., Donowitz, M. & Rao, R. Evolutionary origins of eukaryotic sodium/proton exchangers. Am. J. Physiol. Cell Physiol. 288, C223–C239 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Orlowski, J. & Grinstein, S. Diversity of the mammalian sodium/proton exchanger SLC9 gene family. Pflugers Arch. 447, 549–565 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Wolosker, H., de Souza, D.O. & de Meis, L. Regulation of glutamate transport into synaptic vesicles by chloride and proton gradient. J. Biol. Chem. 271, 11726–11731 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Krapivinsky, G., Mochida, S., Krapivinsky, L., Cibulsky, S.M. & Clapham, D.E. The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron 52, 485–496 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Price, G.D. & Trussell, L.O. Estimate of the chloride concentration in a central glutamatergic terminal: a gramicidin perforated-patch study on the calyx of Held. J. Neurosci. 26, 11432–11436 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hill, J.K. et al. Vestibular hair bundles control pH with (Na+, K+)/H+ exchangers NHE6 and NHE9. J. Neurosci. 26, 9944–9955 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakamura, N., Tanaka, S., Teko, Y., Mitsui, K. & Kanazawa, H. Four Na+/H+ exchanger isoforms are distributed to Golgi and post-Golgi compartments and are involved in organelle pH regulation. J. Biol. Chem. 280, 1561–1572 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Numata, M. & Orlowski, J. Molecular cloning and characterization of a novel (Na+,K+)/H+ exchanger localized to the trans-Golgi network. J. Biol. Chem. 276, 17387–17394 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Ali, R., Brett, C.L., Mukherjee, S. & Rao, R. Inhibition of sodium/proton exchange by a Rab-GTPase–activating protein regulates endosomal traffic in yeast. J. Biol. Chem. 279, 4498–4506 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Brett, C.L., Tukaye, D.N., Mukherjee, S. & Rao, R. The yeast endosomal Na+K+/H+ exchanger Nhx1 regulates cellular pH to control vesicle trafficking. Mol. Biol. Cell 16, 1396–1405 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gilfillan, G.D. et al. SLC9A6 mutations cause X-linked mental retardation, microcephaly, epilepsy and ataxia, a phenotype mimicking Angelman syndrome. Am. J. Hum. Genet. 82, 1003–1010 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morrow, E.M. et al. Identifying autism loci and genes by tracing recent shared ancestry. Science 321, 218–223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Franke, B., Neale, B.M. & Faraone, S.V. Genome-wide association studies in ADHD. Hum. Genet. 126, 13–50 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Grønborg, M. et al. Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein. J. Neurosci. 30, 2–12 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Beg, A.A., Ernstrom, G.G., Nix, P., Davis, M.W. & Jorgensen, E.M. Protons act as a transmitter for muscle contraction in C. elegans. Cell 132, 149–160 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Accardi, A. & Miller, C. Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels. Nature 427, 803–807 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Graves, A.R., Curran, P.K., Smith, C.L. & Mindell, J.A. The Cl/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 453, 788–792 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Picollo, A. & Pusch, M. Chloride/proton antiporter activity of mammalian CLC proteins ClC-4 and ClC-5. Nature 436, 420–423 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Scheel, O., Zdebik, A.A., Lourdel, S. & Jentsch, T.J. Voltage-dependent electrogenic chloride/proton exchange by endosomal CLC proteins. Nature 436, 424–427 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Hell, J.W. & Jahn, R. eds. Preparation of Synaptic Vesicles from Mammalian Brain (Academic Press, San Diego, 1994).

  48. Borst, J.G., Helmchen, F. & Sakmann, B. Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J. Physiol. (Lond.) 489, 825–840 (1995).

    Article  CAS  Google Scholar 

  49. Huang, H. & Trussell, L.O. Control of presynaptic function by a persistent Na+ current. Neuron 60, 975–979 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Orlowski, S. Schuldiner and members of the Edwards laboratory for many thoughtful discussions, S. Manandhar and F. Farrimond for technical assistance, and R.P. Seal for critical reading of the manuscript. This work was supported by fellowships from A*STAR (to G.Y.G.) and the American Heart Association (to L.B.), and by grants from the National Institute on Deafness and Other Communication Disorders and the National Institute of Neurological Disorders and Stroke (to L.O.T.), and from the National Institute of Mental Health and the National Institute on Drug Abuse (to R.H.E.).

Author information

Authors and Affiliations

Authors

Contributions

The biochemical experiments were conducted by G.Y.G., J.U. and T.S.H. in the laboratory of R.H.E. L.B. developed the measurement of 22Na+ uptake. The electrophysiology experiments were performed by H.H. in the laboratory of L.O.T.

Corresponding author

Correspondence to Robert H Edwards.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 482 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goh, G., Huang, H., Ullman, J. et al. Presynaptic regulation of quantal size: K+/H+ exchange stimulates vesicular glutamate transport. Nat Neurosci 14, 1285–1292 (2011). https://doi.org/10.1038/nn.2898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2898

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing