Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Expressing short hairpin RNAs in vivo

Abstract

Promoter-based expression of short hairpin RNAs (shRNAs) may in principle provide stable silencing of genes in any tissue. As for all approaches that require transgene expression, safe delivery is the biggest obstacle, but toxicity can also occur via expression of the sequence itself. Innate immunity mechanisms can be triggered by expressed hairpin RNAs, critical cellular factors can be saturated, and genes other than the intended target can be silenced. Nevertheless, shRNAs constitute a valuable tool for in vivo research and have great therapeutic potential if the challenges with delivery and side effects are appropriately addressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical self-inactivating lentiviral vector construct for transduction of shRNA genes.

Similar content being viewed by others

References

  1. Pei, Y. & Tuschl, T. On the art of identifying effective and specific siRNAs. Nat. Methods 3, 670–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Cullen, B.R. Enhancing and confirming the specificity of RNAi experiments. Nat. Methods 3, 677–681 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Behlke, M.A. Progress towards in vivo use of siRNAs. Mol. Ther. 13, 644–670 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Song, E. et al. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. 9, 347–351 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Reich, S.J. et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol. Vis. 9, 210–216 (2003).

    CAS  PubMed  Google Scholar 

  6. Li, B.J. et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat. Med. 11, 944–951 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Morrissey, D.V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Song, E. et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat. Biotechnol. 23, 709–717 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Zimmermann, T.S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, Q., Contag, C.H., Ilves, H., Johnston, B.H. & Kaspar, R.L. Small hairpin RNAs efficiently inhibit hepatitis C IRES-mediated gene expression in human tissue culture cells and a mouse model. Mol. Ther. 12, 562–568 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Lewis, D.L. & Wolff, J.A. Delivery of siRNA and siRNA expression constructs to adult mammals by hydrodynamic intravascular injection. Methods Enzymol. 392, 336–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, G. et al. Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther. 11, 675–682 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kay, M.A., Glorioso, J.C. & Naldini, L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat. Med. 7, 33–40 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Huang, A. et al. Functional silencing of hepatic microsomal glucose-6-phosphatase gene expression in vivo by adenovirus-mediated delivery of short hairpin RNA. FEBS Lett. 558, 69–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Huang, B. & Kochanek, S. Adenovirus-mediated silencing of huntingtin expression by shRNA. Hum. Gene Ther. 16, 618–626 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Kuninger, D. et al. Gene disruption by regulated short interfering RNA expression, using a two-adenovirus system. Hum. Gene Ther. 15, 1287–1292 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Xia, H. et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat. Med. 10, 816–820 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Hong, C.S., Goins, W.F., Goss, J.R., Burton, E.A. & Glorioso, J.C. Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer's disease-related amyloid-beta peptide in vivo. Gene Ther. 13, 1068–1079 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Thomas, C.E., Ehrhardt, A. & Kay, M.A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 4, 346–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Lin, G. et al. Improving erectile function by silencing phosphodiesterase-5. J. Urol. 174, 1142–1148 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Rubinson, D.A. et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat. Genet. 33, 401–406 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J. & Elledge, S.J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 102, 13212–13217 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Romano, G. Current development of lentiviral-mediated gene transfer. Drug News Perspect. 18, 128–134 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Burger, C. et al. Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol. Ther. 10, 302–317 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Cronin, J., Zhang, X.Y. & Reiser, J. Altering the tropism of lentiviral vectors through pseudotyping. Curr. Gene Ther. 5, 387–398 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Lau, N.C., Lim, L.P., Weinstein, E.G. & Bartel, D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Lee, R.C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Bernstein, E., Caudy, A.A., Hammond, S.M. & Hannon, G.J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Doench, J.G., Petersen, C.P. & Sharp, P.A. siRNAs can function as miRNAs. Genes Dev. 17, 438–442 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16, 720–728 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hutvagner, G. & Zamore, P.D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056–2060 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Yekta, S., Shih, I.H. & Bartel, D.P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Zamore, P.D., Tuschl, T., Sharp, P.A. & Bartel, D.P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25–33 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553–563 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Giraldez, A.J. et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833–838 (2005).

    Article  CAS  PubMed  Google Scholar 

  40. Wu, L., Fan, J. & Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. USA 103, 4034–4039 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Olsen, P.H. & Ambros, V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev. Biol. 216, 671–680 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Reinhart, B.J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Glover, D.J., Lipps, H.J. & Jans, D.A. Towards safe, non-viral therapeutic gene expression in humans. Nat. Rev. Genet. 6, 299–310 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Patil, S.D., Rhodes, D.G. & Burgess, D.J. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J. 7, E61–E77 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sledz, C.A., Holko, M., de Veer, M.J., Silverman, R.H. & Williams, B.R. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Bridge, A.J., Pebernard, S., Ducraux, A., Nicoulaz, A.L. & Iggo, R. Induction of an interferon response by RNAi vectors in mammalian cells. Nat. Genet. 34, 263–264 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Manche, L., Green, S.R., Schmedt, C. & Mathews, M.B. Interactions between double-stranded RNA regulators and the protein kinase DAI. Mol. Cell. Biol. 12, 5238–5248 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Robbins, M.A. et al. Stable expression of shRNAs in human CD34(+) progenitor cells can avoid induction of interferon responses to siRNAs in vitro. Nat. Biotechnol. 24, 566–571 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Marques, J.T. & Williams, B.R. Activation of the mammalian immune system by siRNAs. Nat. Biotechnol. 23, 1399–1405 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Yi, R., Doehle, B.P., Qin, Y., Macara, I.G. & Cullen, B.R. Overexpression of exportin 5 enhances RNA interference mediated by short hairpin RNAs and microRNAs. RNA 11, 220–226 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bohnsack, M.T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185–191 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Yi, R., Qin, Y., Macara, I.G. & Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Gregory, R.I. et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235–240 (2004).

    Article  CAS  PubMed  Google Scholar 

  57. Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016–3027 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Chendrimada, T.P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ketting, R.F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schwarz, D.S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199–208 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Khvorova, A., Reynolds, A. & Jayasena, S.D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209–216 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Reynolds, A. et al. Rational siRNA design for RNA interference. Nat. Biotechnol. 22, 326–330 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    Article  CAS  PubMed  Google Scholar 

  66. Boutla, A., Delidakis, C., Livadaras, I., Tsagris, M. & Tabler, M. Short5′-phosphorylated double-stranded RNAs induce RNA interference in Drosophila. Curr. Biol. 11, 1776–1780 (2001).

    Article  CAS  PubMed  Google Scholar 

  67. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Birmingham, A. et al. 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat. Methods 3, 199–204 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Harborth, J. et al. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev. 13, 83–105 (2003).

    Article  CAS  PubMed  Google Scholar 

  70. Jackson, A.L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Jackson, A.L. et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Persengiev, S.P., Zhu, X. & Green, M.R. Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 10, 12–18 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Saxena, S., Jonsson, Z.O. & Dutta, A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J. Biol. Chem. 278, 44312–44319 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Martinez, J. & Tuschl, T. RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev. 18, 975–980 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Haley, B. & Zamore, P.D. Kinetic analysis of the RNAi enzyme complex. Nat. Struct. Mol. Biol. 11, 599–606 (2004).

    Article  CAS  PubMed  Google Scholar 

  76. Roush, S. & Slack, F. Micromanagement: microRNAs stabilize mRNAs. ACS Chem. Biol. 1, 132–134 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Brennecke, J., Stark, A., Russell, R.B. & Cohen, S.M. Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Grun, D., Wang, Y.L., Langenberger, D., Gunsalus, K.C. & Rajewsky, N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput. Biol. 1, e13 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. John, B. et al. Human MicroRNA targets. PLoS Biol. 2, e363 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  PubMed  Google Scholar 

  81. Bartel, D.P. & Chen, C.Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Krek, A. et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Fedorov, Y. et al. Off-target effects by siRNA can induce toxic phenotype. RNA 12, 1188–1196 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hannon, G.J. & Rossi, J.J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371–378 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Brummelkamp, T.R., Bernards, R. & Agami, R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J. & Conklin, D.S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. McManus, M.T., Petersen, C.P., Haines, B.B., Chen, J. & Sharp, P.A. Gene silencing using micro-RNA designed hairpins. RNA 8, 842–850 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zeng, Y., Wagner, E.J. & Cullen, B.R. Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol. Cell 9, 1327–1333 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Saetrom, P. et al. Conserved microRNA characteristics in mammals. Oligonucleotides 16, 115–144 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Denti, M.A., Rosa, A., Sthandier, O., De Angelis, F.G. & Bozzoni, I. A new vector, based on the PolII promoter of the U1 snRNA gene, for the expression of siRNAs in mammalian cells. Mol. Ther. 10, 191–199 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Szulc, J., Wiznerowicz, M., Sauvain, M.O., Trono, D. & Aebischer, P. A versatile tool for conditional gene expression and knockdown. Nat. Methods 3, 109–116 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Unwalla, H.J. et al. Negative feedback inhibition of HIV-1 by TAT-inducible expression of siRNA. Nat. Biotechnol. 22, 1573–1578 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Kim, D.H. et al. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat. Biotechnol. 22, 321–325 (2004).

    Article  CAS  PubMed  Google Scholar 

  94. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Amarzguioui, M., Rossi, J.J. & Kim, D. Approaches for chemically synthesized siRNA and vector-mediated RNAi. FEBS Lett. 579, 5974–5981 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Gupta, S., Schoer, R.A., Egan, J.E., Hannon, G.J. & Mittal, V. Inducible, reversible, and stable RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA 101, 1927–1932 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gossen, M. et al. Transcriptional activation by tetracyclines in mammalian cells. Science 268, 1766–1769 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. No, D., Yao, T.P. & Evans, R.M. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93, 3346–3351 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang, S. & El-Deiry, W.S. Inducible silencing of KILLER/DR5 in vivo promotes bioluminescent colon tumor xenograft growth and confers resistance to chemotherapeutic agent 5-fluorouracil. Cancer Res. 64, 6666–6672 (2004).

    Article  CAS  PubMed  Google Scholar 

  100. Stolarov, J. et al. Design of a retroviral-mediated ecdysone-inducible system and its application to the expression profiling of the PTEN tumor suppressor. Proc. Natl. Acad. Sci. USA 98, 13043–13048 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Czauderna, F. et al. Inducible shRNA expression for application in a prostate cancer mouse model. Nucleic Acids Res. 31, e127 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Heinonen, J.E., Mohamed, A.J., Nore, B.F. & Smith, C.I. Inducible H1 promoter-driven lentiviral siRNA expression by Stuffer reporter deletion. Oligonucleotides 15, 139–144 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Lin, X. et al. Development of a tightly regulated U6 promoter for shRNA expression. FEBS Lett. 577, 376–380 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Matthess, Y. et al. Conditional inhibition of cancer cell proliferation by tetracycline-responsive, H1 promoter-driven silencing of PLK1. Oncogene 24, 2973–2980 (2005).

    Article  CAS  PubMed  Google Scholar 

  105. Wiznerowicz, M., Szulc, J. & Trono, D. Tuning silence: conditional systems for RNA interference. Nat. Methods 3, 682–688 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Janas, J., Skowronski, J. & Van Aelst, L. Lentiviral delivery of RNAi in hippocampal neurons. Methods Enzymol. 406, 593–605 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Li, M.J. et al. Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy. Mol. Ther. 12, 900–909 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Li, M.J. & Rossi, J.J. Lentiviral vector delivery of recombinant small interfering RNA expression cassettes. Methods Enzymol. 392, 218–226 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Norwegian Research Council and the Norwegian Functional Genomics Program (FUGE) to O.S. and US National Institutes of Health grants from the National Institute of Allergy and Infectious Diseases and National Heart, Lung and Blood Institute to J.J.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J Rossi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snøve, O., Rossi, J. Expressing short hairpin RNAs in vivo. Nat Methods 3, 689–695 (2006). https://doi.org/10.1038/nmeth927

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth927

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing