Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scalable whole-genome single-cell library preparation without preamplification

Abstract

Single-cell genomics is critical for understanding cellular heterogeneity in cancer, but existing library preparation methods are expensive, require sample preamplification and introduce coverage bias. Here we describe direct library preparation (DLP), a robust, scalable, and high-fidelity method that uses nanoliter-volume transposition reactions for single-cell whole-genome library preparation without preamplification. We examined 782 cells from cell lines and triple-negative breast xenograft tumors. Low-depth sequencing, compared with existing methods, revealed greater coverage uniformity and more reliable detection of copy-number alterations. Using phylogenetic analysis, we found minor xenograft subpopulations that were undetectable by bulk sequencing, as well as dynamic clonal expansion and diversification between passages. Merging single-cell genomes in silico, we generated 'bulk-equivalent' genomes with high depth and uniform coverage. Thus, low-depth sequencing of DLP libraries may provide an attractive replacement for conventional bulk sequencing methods, permitting analysis of copy number at the cell level and of other genomic variants at the population level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-cell genome analysis with DLP.
Figure 2: Coverage uniformity and sequencing metrics.
Figure 3: Single-cell copy-number profiles from xenograft SA501X3F.
Figure 4: Analysis of merged clonal genomes for xenograft SA501X3F.
Figure 5: Analysis of SNVs, LOH, and breakpoints for xenograft SA501X3F.

Similar content being viewed by others

References

  1. Nowell, P.C. The clonal evolution of tumor cell populations. Science 194, 23–28 (1976).

    Article  CAS  Google Scholar 

  2. Aparicio, S. & Caldas, C. The implications of clonal genome evolution for cancer medicine. N. Engl. J. Med. 368, 842–851 (2013).

    Article  CAS  Google Scholar 

  3. Burrell, R.A., McGranahan, N., Bartek, J. & Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501, 338–345 (2013).

    Article  CAS  Google Scholar 

  4. Shah, S.P. et al. Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature 461, 809–813 (2009).

    Article  CAS  Google Scholar 

  5. Yachida, S. et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467, 1114–1117 (2010).

    Article  CAS  Google Scholar 

  6. Campbell, P.J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    Article  CAS  Google Scholar 

  7. Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).

    Article  CAS  Google Scholar 

  8. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    Article  CAS  Google Scholar 

  9. Landau, D.A. et al. Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152, 714–726 (2013).

    Article  CAS  Google Scholar 

  10. Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).

    Article  CAS  Google Scholar 

  11. Eirew, P. et al. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518, 422–426 (2015).

    Article  CAS  Google Scholar 

  12. Navin, N. et al. Tumour evolution inferred by single-cell sequencing. Nature 472, 90–94 (2011).

    Article  CAS  Google Scholar 

  13. Zong, C., Lu, S., Chapman, A.R. & Xie, X.S. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338, 1622–1626 (2012).

    Article  CAS  Google Scholar 

  14. Hou, Y. et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148, 873–885 (2012).

    Article  CAS  Google Scholar 

  15. Ni, X. et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc. Natl. Acad. Sci. USA 110, 21083–21088 (2013).

    Article  CAS  Google Scholar 

  16. Gawad, C., Koh, W. & Quake, S.R. Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc. Natl. Acad. Sci. USA 111, 17947–17952 (2014).

    Article  CAS  Google Scholar 

  17. Lohr, J.G. et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat. Biotechnol. 32, 479–484 (2014).

    Article  CAS  Google Scholar 

  18. Wang, Y. et al. Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512, 155–160 (2014).

    Article  CAS  Google Scholar 

  19. Baslan, T. et al. Optimizing sparse sequencing of single cells for highly multiplex copy number profiling. Genome Res. 25, 714–724 (2015).

    Article  CAS  Google Scholar 

  20. Gao, R. et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet. 48, 1119–1130 (2016).

    Article  CAS  Google Scholar 

  21. Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nat. Methods 11, 396–398 (2014).

    Article  CAS  Google Scholar 

  22. Gerstung, M. et al. Reliable detection of subclonal single-nucleotide variants in tumour cell populations. Nat. Commun. 3, 811 (2012).

    Article  Google Scholar 

  23. Ha, G. et al. TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. Genome Res. 24, 1881–1893 (2014).

    Article  CAS  Google Scholar 

  24. Falconer, E. et al. DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution. Nat. Methods 9, 1107–1112 (2012).

    Article  CAS  Google Scholar 

  25. Wang, J., Fan, H.C., Behr, B. & Quake, S.R. Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150, 402–412 (2012).

    Article  CAS  Google Scholar 

  26. de Bourcy, C.F. et al. A quantitative comparison of single-cell whole genome amplification methods. PLoS One 9, e105585 (2014).

    Article  Google Scholar 

  27. Macaulay, I.C. & Voet, T. Single cell genomics: advances and future perspectives. PLoS Genet. 10, e1004126 (2014).

    Article  Google Scholar 

  28. Garvin, T. et al. Interactive analysis and assessment of single-cell copy-number variations. Nat. Methods 12, 1058–1060 (2015).

    Article  CAS  Google Scholar 

  29. Leung, M.L. et al. Highly multiplexed targeted DNA sequencing from single nuclei. Nat. Protoc. 11, 214–235 (2016).

    Article  CAS  Google Scholar 

  30. van den Bos, H. et al. Single-cell whole genome sequencing reveals no evidence for common aneuploidy in normal and Alzheimers disease neurons. Genome Biol. 17, 116 (2016).

    Article  Google Scholar 

  31. Adey, A. et al. Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol. 11, R119 (2010).

    Article  CAS  Google Scholar 

  32. Burleigh, A. et al. A co-culture genome-wide RNAi screen with mammary epithelial cells reveals transmembrane signals required for growth and differentiation. Breast Cancer Res. 17, 4 (2015).

    Article  Google Scholar 

  33. International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  34. Ha, G. et al. Integrative analysis of genome-wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple-negative breast cancer. Genome Res. 22, 1995–2007 (2012).

    Article  CAS  Google Scholar 

  35. Baslan, T. et al. Genome-wide copy number analysis of single cells. Nat. Protoc. 7, 1024–1041 (2012).

    Article  CAS  Google Scholar 

  36. Ronquist, F. & Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).

    Article  CAS  Google Scholar 

  37. Knouse, K.A., Wu, J. & Amon, A. Assessment of megabase-scale somatic copy number variation using single-cell sequencing. Genome Res. 26, 376–384 (2016).

    Article  CAS  Google Scholar 

  38. Ding, J. et al. Feature-based classifiers for somatic mutation detection in tumour-normal paired sequencing data. Bioinformatics 28, 167–175 (2012).

    Article  CAS  Google Scholar 

  39. McPherson, A. et al. nFuse: discovery of complex genomic rearrangements in cancer using high-throughput sequencing. Genome Res. 22, 2250–2261 (2012).

    Article  CAS  Google Scholar 

  40. McConnell, M.J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).

    Article  CAS  Google Scholar 

  41. Cai, X. et al. Single-cell, genome-wide sequencing identifies clonal somatic copy-number variation in the human brain. Cell Rep. 8, 1280–1289 (2014).

    Article  CAS  Google Scholar 

  42. Knouse, K.A., Wu, J., Whittaker, C.A. & Amon, A. Single cell sequencing reveals low levels of aneuploidy across mammalian tissues. Proc. Natl. Acad. Sci. USA 111, 13409–13414 (2014).

    Article  CAS  Google Scholar 

  43. Mazutis, L. et al. Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme. Lab Chip 9, 2902–2908 (2009).

    Article  CAS  Google Scholar 

  44. Mazutis, L. et al. Single-cell analysis and sorting using droplet-based microfluidics. Nat. Protoc. 8, 870–891 (2013).

    Article  CAS  Google Scholar 

  45. Macosko, E.Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  Google Scholar 

  46. Rotem, A. et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat. Biotechnol. 33, 1165–1172 (2015).

    Article  CAS  Google Scholar 

  47. Huft, J., Da Costa, D.J., Walker, D. & Hansen, C.L. Three-dimensional large-scale microfluidic integration by laser ablation of interlayer connections. Lab Chip 10, 2358–2365 (2010).

    Article  CAS  Google Scholar 

  48. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  Google Scholar 

  49. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  50. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding support from the BC Cancer Foundation, the Canadian Breast Cancer Foundation, Genome Canada/Genome BC, the Natural Sciences & Engineering Research Council of Canada (grant RGPIN 386152-10 to C.L.H.), the Terry Fox Research Institute (grant NFP 1021 to S.A. and S.P.S.), the Canadian Institutes of Health Research (grant MOP 126119 to S.A. and S.P.S.), and the Canadian Cancer Society Research Institute (grant 701584 to S.A. and S.P.S.). S.A. and S.P.S. are supported as Canada Research Chairs, and S.P.S. is supported as a Michael Smith Foundation for Health Research Scholar. H.Z. and A.S. are each supported by a Vanier Canada Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Contributions

H.Z., A.S., S.P.S., S.A., and C.L.H. designed the research. H.Z. performed experiments. A.S. analyzed the data. A.S., H.Z., C.L.H., S.A., and S.P.S. wrote the paper. E.L. prepared tissue samples and bulk libraries. P.E. performed xenograft transplants. M.V. contributed to technology development. C.L.H., S.A., and S.P.S. supervised the research.

Corresponding authors

Correspondence to Sohrab P Shah, Samuel Aparicio or Carl L Hansen.

Ethics declarations

Competing interests

C.L.H., H.Z., A.S., S.A. and S.P.S. are inventors on a patent application covering elements of the technology described here and have a financial interest through revenue-sharing policies of the University of British Columbia (UBC). C.L.H. has a financial interest in AbCellera, a company that has licensed rights from UBC to the aforementioned patent application.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14, Supplementary Tables 1 and 6, and Supplementary Note (PDF 15838 kb)

Supplementary Table 2

DLP single-cell sequencing metrics for immortalized normal cell lines 184-hTERT-L2 (page 1) and GM18507 (page 2). (XLS 87 kb)

Supplementary Table 3

DLP single-cell sequencing metrics for patient-derived triple-negative breast cancer xenograft tumours SA501X3F (page 1) and SA501X4F (page 2). (XLS 170 kb)

Supplementary Table 4

Statistics table with Kruskal–Wallis tests (page 1) and Pearson's correlations (page 2). (XLS 22 kb)

Supplementary Table 5

Sequencing metrics for DLP merged bulk-equivalent and standard bulk genomes. (XLS 16 kb)

Supplementary Data

Microfluidic device AutoCAD design file. (ZIP 786 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahn, H., Steif, A., Laks, E. et al. Scalable whole-genome single-cell library preparation without preamplification. Nat Methods 14, 167–173 (2017). https://doi.org/10.1038/nmeth.4140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.4140

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer