Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation

Abstract

Cross-talk between different types of post-translational modifications on the same protein molecule adds specificity and combinatorial logic to signal processing, but it has not been characterized on a large-scale basis. We developed two methods to identify protein isoforms that are both phosphorylated and ubiquitylated in the yeast Saccharomyces cerevisiae, identifying 466 proteins with 2,100 phosphorylation sites co-occurring with 2,189 ubiquitylation sites. We applied these methods quantitatively to identify phosphorylation sites that regulate protein degradation via the ubiquitin-proteasome system. Our results demonstrate that distinct phosphorylation sites are often used in conjunction with ubiquitylation and that these sites are more highly conserved than the entire set of phosphorylation sites. Finally, we investigated how the phosphorylation machinery can be regulated by ubiquitylation. We found evidence for novel regulatory mechanisms of kinases and 14-3-3 scaffold proteins via proteasome-independent ubiquitylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of methodology and PTMs identified.
Figure 2: Evolution and functional enrichment of modification sites.
Figure 3: The effect of proteasome inhibition on protein and PTM site abundance, and properties of regulated phosphorylation sites.
Figure 4: Validation of a new phosphodegron and ubiquitin–mediated regulation of phosphorylation machinery.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Jenuwein, T. & Allis, C.D. Translating the histone code. Science 293, 1074–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Hunter, T. The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol. Cell 28, 730–738 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Ichimura, T. et al. 14-3-3 proteins modulate the expression of epithelial Na+ channels by phosphorylation-dependent interaction with Nedd4-2 ubiquitin ligase. J. Biol. Chem. 280, 13187–13194 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Khosravi, R. et al. Rapid ATM-dependent phosphorylation of MDM2 precedes p53 accumulation in response to DNA damage. Proc. Natl. Acad. Sci. USA 96, 14973–14977 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Emanuele, M.J. et al. Global identification of modular cullin-RING ligase substrates. Cell 147, 459–474 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim, W. et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol. Cell 44, 325–340 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wagner, S.A. et al. A proteome-wide, quantitative survey of in vivo ubiquitylation sites reveals widespread regulatory roles. Mol. Cell Proteomics 10, M111.013284 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Olsen, J.V. et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3, ra3 (2010).

    Article  PubMed  Google Scholar 

  9. Huttlin, E.L. et al. A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143, 1174–1189 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Noort, V. et al. Cross-talk between phosphorylation and lysine acetylation in a genome-reduced bacterium. Mol. Syst. Biol. 8, 571 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yao, Q., Li, H., Liu, B.Q., Huang, X.Y. & Guo, L. SUMOylation-regulated protein phosphorylation, evidence from quantitative phosphoproteomics analyses. J. Biol. Chem. 286, 27342–27349 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Beltrao, P. et al. Systematic functional prioritization of protein posttranslational modifications. Cell 150, 413–425 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21, 921–926 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Beausoleil, S.A. et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc. Natl. Acad. Sci. USA 101, 12130–12135 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gauci, S. et al. Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal. Chem. 81, 4493–4501 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. Nguyen Ba, A.N. & Moses, A.M. Evolution of characterized phosphorylation sites in budding yeast. Mol. Biol. Evol. 27, 2027–2037 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Landry, C.R., Levy, E.D. & Michnick, S.W. Weak functional constraints on phosphoproteomes. Trends Genet. 25, 193–197 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Kõivomägi, M. et al. Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase. Nature 480, 128–131 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nash, P. et al. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514–521 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Henchoz, S. et al. Phosphorylation- and ubiquitin-dependent degradation of the cyclin-dependent kinase inhibitor Far1p in budding yeast. Genes Dev. 11, 3046–3060 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sia, R.A.L., Bardes, E.S.G. & Lew, D.J. Control of Swe1p degradation by the morphogenesis checkpoint. EMBO J. 17, 6678–6688 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Belle, A. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl. Acad. Sci. USA 103, 13004–13009 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, Q. et al. SCFCdc4 enables mating type switching in yeast by cyclin-dependent kinase-mediated elimination of the Ash1 transcriptional repressor. Mol. Cell Biol. 31, 584–598 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Kaplun, L., Ivantsiv, Y., Bakhrat, A. & Raveh, D. DNA damage response-mediated degradation of Ho endonuclease via the ubiquitin system involves its nuclear export. J. Biol. Chem. 278, 48727–48734 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Kishi, T., Ikeda, A., Koyama, N., Fukada, J. & Nagao, R. A refined two-hybrid system reveals that SCFCdc4-dependent degradation of Swi5 contributes to the regulatory mechanism of S-phase entry. Proc. Natl. Acad. Sci. USA 105, 14497–14502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tebb, G., Moll, T., Dowzer, C. & Nasmyth, K. SWI5 instability may be necessary but is not sufficient for asymmetric HO expression in yeast. Genes Dev. 7, 517–528 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Jaquenoud, M., Gulli, M.P., Peter, K. & Peter, M. The Cdc42p effector Gic2p is targeted for ubiquitin-dependent degradation by the SCFGrr1 complex. EMBO J. 17, 5360–5373 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chevalier, D., Morris, E.R. & Walker, J.C. 14-3-3 and FHA domains mediate phosphoprotein interactions. Annu. Rev. Plant Biol. 60, 67–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Narayanan, A. & Jacobson, M.P. Computational studies of protein regulation by post-translational phosphorylation. Curr. Opin. Struct. Biol. 19, 156–163 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Starita, L.M., Lo, R.S., Eng, J.K., von Haller, P.D. & Fields, S. Sites of ubiquitin attachment in Saccharomyces cerevisiae. Proteomics 12, 236–240 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Spence, J. et al. Cell cycle–regulated modification of the ribosome by a variant multiubiquitin chain. Cell 102, 67–76 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Zhu, H., Pan, S., Gu, S., Bradbury, E.M. & Chen, X. Amino acid residue specific stable isotope labeling for quantitative proteomics. Rapid Commun. Mass Spectrom. 16, 2115–2123 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Ong, S.-E. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics 1, 376–386 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Villén, J., Beausoleil, S.A., Gerber, S.A. & Gygi, S.P. Large-scale phosphorylation analysis of mouse liver. Proc. Natl. Acad. Sci. USA 104, 1488–1493 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Villén, J. & Gygi, S.P. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protoc. 3, 1630–1638 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Rush, J. et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat. Biotechnol. 23, 94–101 (2005).

    Article  CAS  PubMed  Google Scholar 

  38. Ficarro, S.B. et al. Magnetic bead processor for rapid evaluation and optimization of parameters for phosphopeptide enrichment. Anal. Chem. 81, 4566–4575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Eng, J.K., McCormack, A.L. & Yates, J.R. III. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Elias, J.E. & Gygi, S.P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat. Methods 4, 207–214 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Beausoleil, S.A., Villén, J., Gerber, S.A., Rush, J. & Gygi, S.P. A probability-based approach for high-throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24, 1285–1292 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Gelperin, D.M. et al. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev. 19, 2816–2826 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hornbeck, P.V. et al. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 40, D261–D270 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. O'Brien, K.P., Remm, M. & Sonnhammer, E.L. Inparanoid: a comprehensive database of eukaryotic orthologs. Nucleic Acids Res. 33, D476–D480 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Medina, I. et al. Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling. Nucleic Acids Res. 38, W210–W213 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pieper, U. et. al. MODBASE, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res. 32, D217–D222 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge J. Hsu for experimental assistance, R.A. Rodriguez-Mias for helpful discussions, and members of the Villén lab for critical reading of the manuscript. This work is supported in part by US National Institutes of Health (NIH) grants R00CA140789 (to J.V.) and P50 GM082250, P01 AI090935, P50 GM081879 and P01 AI091575 (to N.J.K.). S.F. is supported by the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

D.L.S. and J.V. designed research. D.L.S. and L.S. performed research. D.L.S. and P.B. analyzed data. S.F., N.J.K. and J.V. supervised research. A.G. and J.R. provided reagents. D.L.S., P.B. and J.V. wrote the paper. All authors discussed the results and edited the manuscript.

Corresponding author

Correspondence to Judit Villén.

Ethics declarations

Competing interests

A.G. and J.R. are employees of Cell Signaling Technology Inc., which makes the diGly-lysine antibody commercially available.

Supplementary information

Combined PDF

Supplementary Figures 1–5 and Supplementary Table 2 (PDF 556 kb)

Supplementary Table 1

The enrichment of gene ontology (GO) terms in protein isoforms co-modified with ubiquitin and phosphorylation (Ub-phos) vs. those modified only with phosphorylation (NonUb-phos) (XLSX 32 kb)

Supplementary Data 1

Peptide, protein, and PTM site identifications and quantifications (XLSX 10615 kb)

Supplementary Data 2

Co-regulated phosphorylation and ubiquitylation sites (XLSX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Swaney, D., Beltrao, P., Starita, L. et al. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods 10, 676–682 (2013). https://doi.org/10.1038/nmeth.2519

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2519

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research