Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced neuronal RNAi in C. elegans using SID-1

Abstract

We expressed SID-1, a transmembrane protein from Caenorhabditis elegans that is required for systemic RNA interference (RNAi), in C. elegans neurons. This expression increased the response of neurons to double-stranded (ds)RNA delivered by feeding. Mutations in the lin-15b and lin-35 genes enhanced this effect. Worms expressing neuronal SID-1 showed RNAi phenotypes when fed with bacteria expressing dsRNA for known neuronal genes and for uncharacterized genes with no previously known neuronal phenotypes. Neuronal expression of sid-1 decreased nonneuronal RNAi, suggesting that neurons expressing transgenic sid-1(+) served as a sink for dsRNA. This effect, or a sid-1(–) background, can be used to uncover neuronal defects for lethal genes. Expression of sid-1(+) from cell-specific promoters in sid-1 mutants results in cell-specific feeding RNAi. We used these strains to identify a role for integrin signaling genes in mechanosensation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of sid-1 in neurons enhances neuronal RNAi.
Figure 2: Mutations in lin-35 and lin-15b enhance RNAi in neurons expressing sid-1.
Figure 3: Enhanced RNAi for genes needed for touch sensitivity.
Figure 4: Expression of sid-1 in neurons decreases RNAi responses in nonneuronal tissues.
Figure 5: Eliminating integrin signaling proteins by RNAi in neurons.

Similar content being viewed by others

References

  1. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    CAS  PubMed  Google Scholar 

  2. Tabara, H., Grishok, A. & Mello, C.C. RNAi in C. elegans: soaking in the genome sequence. Science 282, 430–431 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Timmons, L. & Fire, A. Specific interference by ingested dsRNA. Nature 395, 854 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Fraser, A.G. et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325–330 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Kamath, R.S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Winston, W.M., Molodowitch, C. & Hunter, C.P. Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295, 2456–2459 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Feinberg, E.H. & Hunter, C.P. Transport of dsRNA into cells by the transmembrane protein SID-1. Science 301, 1545–1547 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Tsang, S.Y., Moore, J.C., Huizen, R.V., Chan, C.W. & Li, R.A. Ectopic expression of systemic RNA interference defective protein in embryonic stem cells. Biochem. Biophys. Res. Commun. 357, 480–486 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Timmons, L., Court, D.L. & Fire, A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene 263, 103–112 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Tavernarakis, N., Wang, S.L., Dorovkov, M., Ryazanov, A. & Driscoll, M. Heritable and inducible genetic interference by double-stranded RNA encoded by transgenes. Nat. Genet. 24, 180–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Simmer, F. et al. Loss of the putative RNA-directed RNA polymerase RRF-3 makes C. elegans hypersensitive to RNAi. Curr. Biol. 12, 1317–1319 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Lehner, B. et al. Loss of LIN-35, the Caenorhabditis elegans ortholog of the tumor suppressor p105Rb, results in enhanced RNA interference. Genome Biol. 7, R4 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kennedy, S., Wang, D. & Ruvkun, G. A conserved siRNA-degrading RNase negatively regulates RNA interference in C. elegans. Nature 427, 645–649 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Schmitz, C., Kinge, P. & Hutter, H. Axon guidance genes identified in a large-scale RNAi screen using the RNAi-hypersensitive Caenorhabditis elegans strain nre-1(hd20) lin-15b(hd126). Proc. Natl. Acad. Sci. USA 104, 834–839 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, D. et al. Somatic misexpression of germline P granules and enhanced RNA interference in retinoblastoma pathway mutants. Nature 436, 593–597 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Simmer, F. et al. Genome-wide RNAi of C. elegans using the hypersensitive rrf-3 strain reveals novel gene functions. PLoS Biol. 1, E12 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sieburth, D. et al. Systematic analysis of genes required for synapse structure and function. Nature 436, 510–517 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Chalfie, M. & Au, M. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science 243, 1027–1033 (1989).

    Article  CAS  PubMed  Google Scholar 

  19. Hardin, J., King, R., Thomas-Virnig, C. & Raich, W.B. Zygotic loss of ZEN-4/MKLP1 results in disruption of epidermal morphogenesis in the C. elegans embryo. Dev. Dyn. 237, 830–836 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Winston, W.M., Sutherlin, M., Wright, A.J., Feinberg, E.H. & Hunter, C.P. Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc. Natl. Acad. Sci. USA 104, 10565–10570 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jose, A.M., Smith, J.J. & Hunter, C.P. Export of RNA silencing from C. elegans tissues does not require the RNA channel SID-1. Proc. Natl. Acad. Sci. USA 106, 2283–2288 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Emtage, L., Gu, G., Hartwieg, E. & Chalfie, M. Extracellular proteins organize the mechanosensory channel complex in C. elegans touch receptor neurons. Neuron 44, 795–807 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Yigit, E. et al. Analysis of the C. elegans Argonaute family reveals that distinct Argonautes act sequentially during RNAi. Cell 127, 747–757 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Tijsterman, M., May, R.C., Simmer, F., Okihara, K.L. & Plasterk, R.H. Genes required for systemic RNA interference in Caenorhabditis elegans. Curr. Biol. 14, 111–116 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Ferguson, E.L. & Horvitz, H.R. The multivulva phenotype of certain Caenorhabditis elegans mutants results from defects in two functionally redundant pathways. Genetics 123, 109–121 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chalfie, M. & Sulston, J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol. 82, 358–370 (1981).

    Article  CAS  PubMed  Google Scholar 

  27. Brenner, S. The genetics of Caenorhabditis elegans. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Hodgkin, J. Male phenotypes and mating efficiency in Caenorhabditis elegans. Genetics 103, 43–64 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Maduro, M. & Pilgrim, D. Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. Genetics 141, 977–988 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chelur, D.S. & Chalfie, M. Targeted cell killing by reconstituted caspases. Proc. Natl. Acad. Sci. USA 104, 2283–2288 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. EMBO J. 10, 3959–3970 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Poyurovsky, M.V. et al. Nucleotide binding by the Mdm2 RING domain facilitates Arf-independent Mdm2 nucleolar localization. Mol. Cell 12, 875–887 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Frokjaer-Jensen, C. et al. Single-copy insertion of transgenes in Caenorhabditis elegans. Nat. Genet. 40, 1375–1383 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Grishok for helpful discussions, J. Kratz for generating the Psng-1yfp plasmid, S. Karimzadegan for generating the Punc-4mdm2gfp; Punc-119sid-1 strain. Some C. elegans strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the US National Institutes of Health National Center for Research Resources, the C. elegans Gene Knockout Consortium and the National Bioresource Project of Japan. I.T. was supported by an EMBO Long Term fellowship (ALTF 298-2004) and a Human Frontier Science Program Long Term fellowship (LT00776/2005-l/1). This work was supported by US National Institutes of Health grant GM30997 to M.C.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed experiments; D.C. generated the initial constructs and constructed the multiply mutant lines; X.C. generated the cell-specific constructs and constructed strains with the sid-1 mutation; A.C., D.C., I.T. and X.C. conducted the RNAi tests; and A.C., I.T. and M.C. wrote the paper.

Corresponding author

Correspondence to Martin Chalfie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Table 1 (PDF 64 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calixto, A., Chelur, D., Topalidou, I. et al. Enhanced neuronal RNAi in C. elegans using SID-1. Nat Methods 7, 554–559 (2010). https://doi.org/10.1038/nmeth.1463

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1463

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing