Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators

Abstract

Genetically encoded calcium indicators (GECIs) can be used to image activity in defined neuronal populations. However, current GECIs produce inferior signals compared to synthetic indicators and recording electrodes, precluding detection of low firing rates. We developed a single-wavelength GCaMP2-based GECI (GCaMP3), with increased baseline fluorescence (3-fold), increased dynamic range (3-fold) and higher affinity for calcium (1.3-fold). We detected GCaMP3 fluorescence changes triggered by single action potentials in pyramidal cell dendrites, with signal-to-noise ratio and photostability substantially better than those of GCaMP2, D3cpVenus and TN-XXL. In Caenorhabditis elegans chemosensory neurons and the Drosophila melanogaster antennal lobe, sensory stimulation–evoked fluorescence responses were significantly enhanced with GCaMP3 (4–6-fold). In somatosensory and motor cortical neurons in the intact mouse, GCaMP3 detected calcium transients with amplitudes linearly dependent on action potential number. Long-term imaging in the motor cortex of behaving mice revealed large fluorescence changes in imaged neurons over months.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro characterization of GCaMP3.
Figure 2: Action potential–evoked response of GCaMP3 in hippocampal pyramidal and layer 2/3 cortical neurons.
Figure 3: Comparison of GECI responses in pyramidal cell principal dendrite in acute cortical slice to back-propagating APs.
Figure 4: In vivo imaging of sensory-evoked Ca2+ transients with GCaMPs in C. elegans.
Figure 5: In vivo imaging of sensory-evoked Ca2+ transients with GCaMPs in Drosophila.
Figure 6: In vivo Ca2+ imaging of evoked and spontaneous activity with GCaMP3 in awake, behaving mice.

Similar content being viewed by others

References

  1. Yuste, R., Peinado, A. & Katz, L.C. Neuronal domains in developing neocortex. Science 257, 665–669 (1992).

    Article  CAS  Google Scholar 

  2. Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    Article  CAS  Google Scholar 

  3. Fetcho, J.R., Cox, K.J. & O'Malley, D.M. Monitoring activity in neuronal populations with single-cell resolution in a behaving vertebrate. Histochem. J. 30, 153–167 (1998).

    Article  CAS  Google Scholar 

  4. Tour, O. et al. Calcium Green FlAsH as a genetically targeted small-molecule calcium indicator. Nat. Chem. Biol. 3, 423–431 (2007).

    Article  CAS  Google Scholar 

  5. Palmer, A.E. & Tsien, R.Y. Measuring calcium signaling using genetically targetable fluorescent indicators. Nat. Protocols 1, 1057–1065 (2006).

    Article  CAS  Google Scholar 

  6. Mank, M. et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat. Methods 5, 805–811 (2008).

    Article  CAS  Google Scholar 

  7. McCombs, J.E. & Palmer, A.E. Measuring calcium dynamics in living cells with genetically encodable calcium indicators. Methods 46, 152–159 (2008).

    Article  CAS  Google Scholar 

  8. Mank, M. & Griesbeck, O. Genetically encoded calcium indicators. Chem. Rev. 108, 1550–1564 (2008).

    Article  CAS  Google Scholar 

  9. Baird, G.S., Zacharias, D.A. & Tsien, R.Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl. Acad. Sci. USA 96, 11241–11246 (1999).

    Article  CAS  Google Scholar 

  10. Nagai, T., Sawano, A., Park, E.S. & Miyawaki, A. Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc. Natl. Acad. Sci. USA 98, 3197–3202 (2001).

    Article  CAS  Google Scholar 

  11. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  Google Scholar 

  12. Heim, N. & Griesbeck, O. Genetically encoded indicators of cellular calcium dynamics based on troponin C and green fluorescent protein. J. Biol. Chem. 279, 14280–14286 (2004).

    Article  CAS  Google Scholar 

  13. Palmer, A.E. et al. Ca2+ indicators based on computationally redesigned calmodulin-peptide pairs. Chem. Biol. 13, 521–530 (2006).

    Article  CAS  Google Scholar 

  14. Wallace, D.J. et al. Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nat. Methods 5, 797–804 (2008).

    Article  CAS  Google Scholar 

  15. He, J., Ma, L., Kim, S., Nakai, J. & Yu, C.R. Encoding gender and individual information in the mouse vomeronasal organ. Science 320, 535–538 (2008).

    Article  CAS  Google Scholar 

  16. Chalasani, S.H. et al. Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450, 63–70 (2007).

    Article  CAS  Google Scholar 

  17. Wang, J.W., Wong, A.M., Flores, J., Vosshall, L.B. & Axel, R. Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271–282 (2003).

    Article  CAS  Google Scholar 

  18. Akerboom, J. et al. Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J. Biol. Chem. 284, 6455–6464 (2008).

    Article  Google Scholar 

  19. Wang, Q., Shui, B., Kotlikoff, M.I. & Sondermann, H. Structural basis for calcium sensing by GCaMP2. Structure 16, 1817–1827 (2008).

    Article  CAS  Google Scholar 

  20. Hires, S.A., Tian, L. & Looger, L.L. Reporting neural activity with genetically encoded calcium indicators. Brain Cell Biol. 36, 69–86 (2008).

    Article  CAS  Google Scholar 

  21. Varshavsky, A. The N-end rule at atomic resolution. Nat. Struct. Mol. Biol. 15, 1238–1240 (2008).

    Article  CAS  Google Scholar 

  22. Pedelacq, J.D., Cabantous, S., Tran, T., Terwilliger, T.C. & Waldo, G.S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 24, 79–88 (2006).

    Article  CAS  Google Scholar 

  23. Pologruto, T.A., Yasuda, R. & Svoboda, K. Monitoring neural activity and [Ca2+] with genetically encoded Ca2+ indicators. J. Neurosci. 24, 9572–9579 (2004).

    Article  CAS  Google Scholar 

  24. Mao, T., O'Connor, D.H., Scheuss, V., Nakai, J. & Svoboda, K. Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS ONE 3, e1796 (2008).

    Article  Google Scholar 

  25. Hendel, T. et al. Fluorescence changes of genetic calcium indicators and OGB-1 correlated with neural activity and calcium in vivo and in vitro. J. Neurosci. 28, 7399–7411 (2008).

    Article  CAS  Google Scholar 

  26. Markram, H., Helm, P.J. & Sakmann, B. Dendritic calcium transients evoked by single back-propagating action potentials in rat neocortical pyramidal neurons. J. Physiol. (Lond.) 485, 1–20 (1995).

    Article  CAS  Google Scholar 

  27. Shepherd, G.M. & Svoboda, K. Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. J. Neurosci. 25, 5670–5679 (2005).

    Article  CAS  Google Scholar 

  28. Dombeck, D.A., Khabbaz, A.N., Collman, F., Adelman, T.L. & Tank, D.W. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56, 43–57 (2007).

    Article  CAS  Google Scholar 

  29. Ferkey, D.M. et al. C. elegans G protein regulator RGS-3 controls sensitivity to sensory stimuli. Neuron 53, 39–52 (2007).

    Article  CAS  Google Scholar 

  30. Jayaraman, V. & Laurent, G. Evaluating a genetically encoded optical sensor of neural activity using electrophysiology in intact adult fruit flies. Front Neural Circuits 1, 3 (2007).

    Article  Google Scholar 

  31. Kim, S.G. & Ogawa, S. Insights into new techniques for high resolution functional MRI. Curr. Opin. Neurobiol. 12, 607–615 (2002).

    Article  CAS  Google Scholar 

  32. Hasan, M.T. et al. Functional fluorescent Ca2+ indicator proteins in transgenic mice under TET control. PLoS Biol. 2, e163 (2004).

    Article  Google Scholar 

  33. Garaschuk, O., Griesbeck, O. & Konnerth, A. Troponin C–based biosensors: a new family of genetically encoded indicators for in vivo calcium imaging in the nervous system. Cell Calcium 42, 351–361 (2007).

    Article  CAS  Google Scholar 

  34. Kotlikoff, M.I. Genetically encoded Ca2+ indicators: using genetics and molecular design to understand complex physiology. J. Physiol. (Lond.) 578, 55–67 (2007).

    Article  CAS  Google Scholar 

  35. Gray, N.W., Weimer, R.M., Bureau, I. & Svoboda, K. Rapid redistribution of synaptic PSD-95 in the neocortex in vivo. PLoS Biol. 4, e370 (2006).

    Article  Google Scholar 

  36. Saito, T. & Nakatsuji, N. Efficient gene transfer into the embryonic mouse brain using in vivo electroporation. Dev. Biol. 240, 237–246 (2001).

    Article  CAS  Google Scholar 

  37. Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  Google Scholar 

  38. Markstein, M., Pitsouli, C., Villalta, C., Celniker, S.E. & Perrimon, N. Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat. Genet. 40, 476–483 (2008).

    Article  CAS  Google Scholar 

  39. Thiel, G., Greengard, P. & Sudhof, T.C. Characterization of tissue-specific transcription by the human synapsin I gene promoter. Proc. Natl. Acad. Sci. USA 88, 3431–3435 (1991).

    Article  CAS  Google Scholar 

  40. Stoppini, L., Buchs, P.A. & Muller, D. A simple method for organotypic cultures of nervous tissue. J. Neurosci. Methods 37, 173–182 (1991).

    Article  CAS  Google Scholar 

  41. Brand, A.H., Manoukian, A.S. & Perrimon, N. Ectopic expression in Drosophila. Methods Cell Biol. 44, 635–654 (1994).

    Article  CAS  Google Scholar 

  42. Wilson, R.I. & Laurent, G. Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J. Neurosci. 25, 9069–9079 (2005).

    Article  CAS  Google Scholar 

  43. Huber, D. et al. Sparse optical microstimulation in barrel cortex drives learned behaviour in freely moving mice. Nature 451, 61–64 (2008).

    Article  CAS  Google Scholar 

  44. Hippenmeyer, S. et al. A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol. 3, e159 (2005).

    Article  Google Scholar 

  45. Petreanu, L., Huber, D., Sobczyk, A. & Svoboda, K. Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections. Nat. Neurosci. 10, 663–668 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Simpson and S. Hampel for cloning GCaMPs into pMUH, and members of the Fly Core for making fly crosses. pMUH was a generous gift from B. Pfeiffer and G. Rubin. We thank J. Seelig, who contributed to the Drosophila imaging experiments, S. Viswanathan and S. Sternson for assistance in screening mutants in HEK293 cells, J. Marvin for assistance in screening mutants in Escherichia coli, B. Zemelman for assistance in virus production, H. Zhong, T. Sato and B. Borghuis for developing image analysis software, D.K. O'Connor for assistance with in utero electroporation, H. White and S. Winfrey for cell culture, B. Shields and A. Hu for immunostaining, A. Arnold for helping with imaging experiments, members of the Molecular Biology Shared Resource for plasmid preparation and sequencing, and J. Marvin, J. Simpson and G. Tervo for critical reading of the manuscript. All affiliations are Howard Hughes Medical Institute, Janelia Farm Research Campus. GCaMP2 plasmid was a gift from M. Kotlikoff (Cornell University); TN-XXL plasmid was a gift from O. Griesbeck (Max Planck Institute of Neurobiology); D3cpVenus plasmid was a gift from A. Palmer (University of Colorado); GH146-Gal4 flies were a gift from L. Luo (Stanford University); UAS-GCaMP1.6 flies were a gift from D. Rieff and A. Borst (Max Planck Institute of Neurobiology).

Author information

Authors and Affiliations

Authors

Contributions

L.L.L., K.S., L.T., S.A.H. and T.M. designed the project; L.T. and L.L.L. designed the sensor and screen in E. coli and HEK293 cells; L.T., T.M., S.A.H. and L.P. tested the GCaMP variant in brain slice; S.A.H. tested FRET sensor and GCaMP2 in brain slice; S.A.H., L.T. and D.H. analyzed imaging data of brain slice and in vivo; D.H. performed in vivo mouse brain imaging; S.H.C. and C.I.B. performed worm imaging and data analysis; V.J. and M.E.C. performed calcium imaging and data analysis in the fly; S.A.M. and S.A.H. analyzed data for AP detection probability; J.A., L.L.L. and E.R.S. analyzed the structure; L.L.L. and L.T. led the project; L.L.L., K.S., L.T. and S.A.H. wrote the paper.

Corresponding author

Correspondence to Loren L Looger.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1–3 (PDF 7089 kb)

Supplementary Movie 1

Spontaneous neural activity visualized by GCaMP2 in cultured hippocampal brain slice (3× real time) (MOV 7960 kb)

Supplementary Movie 2

Spontaneous neural activity visualized by GCaMP3 in cultured hippocampal brain slice (3× real time) (MOV 9095 kb)

Supplementary Movie 3

Naturally occurring activity of populations of layer 2/3 neurons expressing GCaMP3 in the primary motor cortex (M1) of awake, behaving mouse during 140 s sequence of two-photon images (10× real time) (AVI 7773 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, L., Hires, S., Mao, T. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6, 875–881 (2009). https://doi.org/10.1038/nmeth.1398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1398

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing