Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epstein–Barr virus–associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2

Abstract

Epstein–Barr virus (EBV) is etiologically linked to endemic Burkitt lymphoma (BL), but its contribution to lymphomagenesis, versus that of the chromosomal translocation leading to c-myc gene deregulation, remains unclear. The virus's growth-transforming (Latency III) program of gene expression is extinguished in tumor cells, and only a single viral protein, the EBV nuclear antigen (EBNA)1, is expressed via the alternative Latency I program. It is not known if BL arises from a B-cell subset in which EBV naturally adopts a Latency I infection or if a clone with limited antigen expression has been selected from an EBV-transformed Latency III progenitor pool. Here we identify a subset of BL tumors in which the Latency III-associated EBNA promoter Wp is active and most EBNAs are expressed, but where a gene deletion has specifically abrogated the expression of EBNA2. This implies that BL can be selected from a Latency III progenitor and that the principal selection pressure is for downregulation of the c-Myc antagonist EBNA2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell-surface phenotype and EBV gene transcription in standard and atypical BL lines versus LCLs.
Figure 2: EBV gene expression in standard and atypical BL lines versus LCLs.
Figure 3: EBV latent protein expression and c-Myc levels in standard and atypical BL lines versus LCLs.
Figure 4: Antigen processing in Sal-BL and Oku-BL cell lines versus the Sal sp-LCL.
Figure 5: EBV latent gene expression in representative BL biopsy samples.
Figure 6: EBNA2 gene deletion in atypical BL cell lines.

Similar content being viewed by others

References

  1. Rickinson, A.B. & Kieff, E. in Fields Virology 4th edn., Vol. II (eds. Knipe, D.M. & Howley, P.M.) 2575–2627 (Lippincott, Williams & Raven, Philadelphia, 2001).

    Google Scholar 

  2. Rowe, M. et al. Differences in B cell growth phenotype reflect novel patterns of Epstein–Barr virus latent gene expression in Burkitt's lymphoma cells. EMBO J. 6, 2743–2751 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sample, J. et al. Restricted Epstein–Barr virus protein expression in Burkitt lymphoma is due to a different Epstein–Barr nuclear antigen 1 transcriptional initiation site. Proc. Natl. Acad. Sci. USA 88, 6343–6347 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schaefer, B.C., Woisetschlaeger, M., Strominger, J.L. & Speck, S.H. Exclusive expression of Epstein–Barr virus nuclear antigen 1 in Burkitt lymphoma arises from a third promoter, distinct from the promoters used in latently infected lymphocytes. Proc. Natl. Acad. Sci. USA 88, 6550–6554 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schaefer, B.C., Strominger, J.L. & Speck, S.H. Redefining the Epstein–Barr virus-encoded nuclear antigen EBNA-1 gene promoter and transcription initiation site in group I Burkitt lymphoma cell lines. Proc. Natl. Acad. Sci. USA 92, 10565–10569 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nonkwelo, C. et al. Transcription start sites downstream of the Epstein–Barr virus (EBV) Fp promoter in early-passage Burkitt lymphoma cells define a fourth promoter for expression of the EBV EBNA-1 protein. J. Virol. 70, 623–627 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kieff, E. & Rickinson, A.B. in Fields Virology 4th edn., Vol. II (eds. Knipe, D.M. & Howley, P.M.) 2511–2573 (Lippincott, Williams & Raven, Philadelphia, 2001).

    Google Scholar 

  8. Young, L. et al. Expression of Epstein–Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. N. Engl. J. Med. 321, 1080–1085 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Woisetschlaeger, M. et al. Promoter switching in Epstein–Barr virus during the initial stages of infection of B lymphocytes. Proc. Natl. Acad. Sci. USA 87, 1725–1729 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Woisetschlaeger, M. et al. Role for the Epstein–Barr virus nuclear antigen 2 in viral promoter switching during initial stages of infection. Proc. Natl. Acad. Sci. USA 88, 3942–3946 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sung, N.S., Kenney, S., Gutsch, D.E. & Pagano, J.S. EBNA2 transactivates a lymphoid-specific enhancer in the BamHI C promoter of Epstein–Barr virus. J. Virol. 65, 2164–2169 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Abbot, S.D. et al. Epstein–Barr virus nuclear antigen 2 induces expression of the virus-encoded latent membrane protein. J. Virol. 64, 2126–2134 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fahraeus, R. et al. Epstein–Barr virus-encoded nuclear antigen 2 activates the viral latent membrane protein promoter by modulating the activity of a negative regulatory element. Proc. Natl. Acad. Sci. USA 87, 7390–7394 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, F. et al. Epstein–Barr virus nuclear antigen 2 transactivates latent membrane protein LMP1. J. Virol. 64, 3407–3416 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zimber-Strobl, U. et al. Epstein–Barr virus nuclear antigen 2 activates transcription of the terminal protein gene. J. Virol. 65, 415–423 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaiser, C. et al. The proto-oncogene c-myc is a direct target gene of Epstein–Barr virus nuclear antigen 2. J. Virol. 73, 4481–4484 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Gregory, C.D. et al. Identification of a subset of normal B cells with a Burkitt's lymphoma (BL)-like phenotype. J. Immunol. 139, 313–318 (1987).

    CAS  PubMed  Google Scholar 

  18. Magrath, I. The pathogenesis of Burkitt's lymphoma. Adv. Cancer Res. 55, 133–270 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Babcock, G.J., Hochberg, D. & Thorley-Lawson, D.A. The expression pattern of Epstein–Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B cell. Immunity 13, 497–506 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Khanna, R. & Burrows, S.R. Role of cytotoxic T lymphocytes in Epstein–Barr virus-associated diseases. Annu. Rev. Microbiol. 54, 19–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Pajic, A. et al. Antagonistic effects of c-Myc and Epstein–Barr virus latent genes on the phenotype of human B cells. Int. J. Cancer 93, 810–816 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Finke, J. et al. Monoclonal and polyclonal antibodies against Epstein–Barr virus nuclear antigen 5 (EBNA-5) detect multiple protein species in Burkitt's lymphoma and lymphoblastoid cell lines. J. Virol. 61, 3870–3878 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Rowe, M. et al. Restoration of endogenous antigen processing in Burkitt's lymphoma cells by Epstein–Barr virus latent membrane protein-1: coordinate up-regulation of peptide transporters and HLA-class I antigen expression. Eur. J. Immunol. 25, 1374–1384 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Khanna, R., Burrows, S.R., Argaet, V. & Moss, D.J. Endoplasmic reticulum signal sequence facilitated transport of peptide epitopes restores immunogenicity of an antigen processing defective tumor cell line. Int. Immunol. 6, 639–645 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Bornkamm, G.W., Hudewentz, J., Freese, U.K. & Zimber, U. Deletion of the nontransforming Epstein–Barr virus strain P3HR-1 causes fusion of the large internal repeat to the DSL region. J. Virol. 43, 952–968 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rabson, M., Gradoville, L., Heston, L. & Miller, G. Non-immortalizing P3J-HR-1 Epstein–Barr virus: a deletion mutant of its transforming parent, Jijoye. J. Virol. 44, 834–844 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hinuma, Y. et al. Immunofluorescence and herpes-type virus particles in the P3HR-1 Burkitt lymphoma cell line. J. Virol. 1, 1045–1051 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jones, M.D., Foster, L., Sheedy, T. & Griffin, B.E. The EB virus genome in Daudi Burkitt's lymphoma cells has a deletion similar to that observed in a non-transforming strain (P3HR-1) of the virus. EMBO J. 3, 813–821 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Parker, B.D. et al. Sequence and transcription of Raji Epstein–Barr virus DNA spanning the B95-8 deletion region. Virology 179, 339–346 (1990).

    Article  CAS  PubMed  Google Scholar 

  30. Kempkes, B. et al. B-cell proliferation and induction of early G1-regulating proteins by Epstein–Barr virus mutants conditional for EBNA2. EMBO J. 14, 88–96 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yoo, L., Mooney, M., Puglielli, M.T. & Speck, S. B cell lines immortalised with an Epstein–Barr virus mutant lacking the Cp EBNA2 enhancer are biased toward utilisation of the oriP-proximal EBNA gene promoter Wp1. J. Virol. 71, 9134–9142 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yoo, L. & Speck, S.H. Determining the role of the Epstein–Barr virus Cp EBNA2-dependent enhancer during the establishment of latency by using mutant and wild-type viruses recovered from cottontop marmoset lymphoblastoid cell lines. J. Virol. 74, 11115–11120 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cesarman, E., Dalla-Favera, R., Bentley, D. & Groudine, M. Mutations in the first exon are associated with altered transcription of c-myc in Burkitt lymphoma. Science 238, 1272–1275 (1987).

    Article  CAS  PubMed  Google Scholar 

  34. Bhatia, K. et al. Point mutations in the c-Myc transactivation domain are common in Burkitt's lymphoma and mouse plasmacytomas. Nature Genet. 5, 56–61 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Goossens, T., Klein, U. & Kuppers, R. Frequent occurrence of deletions and duplications during somatic hypermutation: Implications for oncogene translocations and heavy chain disease. Proc. Natl. Acad. Sci. USA 95, 2463–2468 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Komano, J., Sugiura, M. & Takada, K. Epstein–Barr virus contributes to the malignant phenotype and to apoptosis resistance in Burkitt's lymphoma cell line Akata. J. Virol. 72, 9150–9156 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ruf, I.K. et al. Epstein–Barr virus regulates c-Myc, apoptosis, and tumorigenicity in Burkitt lymphoma. Mol. Cell. Biol. 19, 1651–1660 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Polack, A. et al. c-myc activation renders proliferation of Epstein–Barr virus (EBV)-transformed cells independent of EBV nuclear antigen 2 and latent membrane protein 1. Proc. Natl. Acad. Sci. USA 93, 10411–10416 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gavioli, R. et al. c-Myc overexpression activates alternative pathways for intracellular proteolysis in lymphoma cells. Nature Cell Biol. 3, 283–288 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Staege, M.S. et al. Myc overexpression imposes a nonimmunogenic phenotype on Epstein–Barr virus-infected B cells. Proc. Natl. Acad. Sci. USA 99, 4550–4555 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kovalchuk, A.L. et al. Burkitt lymphoma in the mouse. J. Exp. Med. 192, 1183–1190 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Habeshaw, G. et al. Epstein–Barr virus nuclear antigen 1 sequences in endemic and sporadic Burkitt's lymphoma reflect virus strains prevalent in different geographic areas. J. Virol. 73, 965–975 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rooney, C.M. et al. Endemic Burkitt's lymphoma: phenotypic analysis of tumor biopsy cells and of derived tumor cell lines. J. Natl. Cancer Inst. 77, 681–687 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Tierney, R.J., Steven, N., Young, L.S. & Rickinson, A.B. Epstein–Barr virus latency in blood mononuclear cells—analysis of viral gene-transcription during primary infection and in the carrier state. J. Virol. 68, 7374–7385 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lalvani, A. et al. Rapid effector function in CD8+ memory T cells. J. Exp. Med. 186, 859–865 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Leese for performing the Elispot assays; D. Croom-Carter for assistance with immunoblotting and D. Morton for tumor biopsies and matching blood samples. This work was supported by Cancer Research UK and by a Cancer Research UK-funded studentship to G.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Rickinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, G., Bell, A. & Rickinson, A. Epstein–Barr virus–associated Burkitt lymphomagenesis selects for downregulation of the nuclear antigen EBNA2. Nat Med 8, 1098–1104 (2002). https://doi.org/10.1038/nm758

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm758

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing