Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversal of obesity by targeted ablation of adipose tissue

Abstract

Obesity is an increasingly prevalent human condition in developed societies. Despite major progress in the understanding of the molecular mechanisms leading to obesity, no safe and effective treatment has yet been found. Here, we report an antiobesity therapy based on targeted induction of apoptosis in the vasculature of adipose tissue. We used in vivo phage display to isolate a peptide motif (sequence CKGGRAKDC) that homes to white fat vasculature. We show that the CKGGRAKDC peptide associates with prohibitin, a multifunctional membrane protein, and establish prohibitin as a vascular marker of adipose tissue. Targeting a proapoptotic peptide to prohibitin in the adipose vasculature caused ablation of white fat. Resorption of established white adipose tissue and normalization of metabolism resulted in rapid obesity reversal without detectable adverse effects. Because prohibitin is also expressed in blood vessels of human white fat, this work may lead to the development of targeted drugs for treatment of obese patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo fat homing of the CKGGRAKDC motif in genetically obese mice.
Figure 2: In vivo fat homing of the CKGGRAKDC motif in wild-type mice.
Figure 3: Physiological effects of treatment with CKGGRAKDC-GG-D(KLAKLAK)2.
Figure 4: Destruction of fat blood vessels as a result of targeted apoptosis.
Figure 5: Metabolism changes in obese mice in response to white fat ablation.
Figure 6: Prohibitin is the target of CKGGRAKDC in white fat.

Similar content being viewed by others

References

  1. Kopelman, P.G. Obesity as a medical problem. Nature 404, 635–643 (2000).

    Article  CAS  Google Scholar 

  2. Leibel, R.L., Edens, N.K. & Fried, S.K. Physiologic basis for the control of body fat distribution in humans. Annu. Rev. Nutr. 9, 417–443 (1989).

    Article  CAS  Google Scholar 

  3. Flegal, K.M., Carroll, M.D., Ogden, C.L. & Johnson, C.L. Prevalence and trends in obesity among US adults, 1999-2000. JAMA 288, 1723–1727 (2002).

    Article  Google Scholar 

  4. Fontaine, K.R., Redden, D.T., Wang, C., Westfall, A.O. & Allison, D.B. Years of life lost due to obesity. JAMA 289, 187–193 (2003).

    Article  Google Scholar 

  5. Masuzaki, H. et al. A transgenic model of visceral obesity and the metabolic syndrome. Science 294, 2166–2170 (2001).

    Article  CAS  Google Scholar 

  6. Spiegelman, B.M. & Flier, J.S. Obesity and the regulation of energy balance. Cell 104, 531–543 (2001).

    Article  CAS  Google Scholar 

  7. Clapham, J.C., Arch, J.R. & Tadayyon, M. Anti-obesity drugs: a critical review of current therapies and future opportunities. Pharmacol. Ther. 89, 81–121 (2001).

    Article  CAS  Google Scholar 

  8. Woods, S.C. & Seeley, R.J. Adiposity signals and the control of energy homeostasis. Nutrition 16, 894–902 (2000).

    Article  CAS  Google Scholar 

  9. Leibowitz, S.F. Brain peptides and obesity: pharmacologic treatment. Obes. Res. 3 (suppl. 4), 573–589 (1995).

    Article  Google Scholar 

  10. O'Reilly, M.S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    Article  CAS  Google Scholar 

  11. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31 (1995).

    Article  CAS  Google Scholar 

  12. Folkman, J. Addressing tumor blood vessels. Nat. Biotechnol. 15, 510 (1997).

    Article  CAS  Google Scholar 

  13. Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med. 6, 389–395 (2000).

    Article  CAS  Google Scholar 

  14. Eliceiri, B.P. & Cheresh, D.A. Adhesion events in angiogenesis. Curr. Opin. Cell Biol. 13, 563–568 (2001).

    Article  CAS  Google Scholar 

  15. Burrows, F.J. & Thorpe, P.E. Vascular targeting—a new approach to the therapy of solid tumors. Pharmacol. Ther. 64, 155–174 (1994).

    Article  CAS  Google Scholar 

  16. Zetter, B.R. Angiogenesis and tumor metastasis. Annu. Rev. Med. 49, 407–424 (1998).

    Article  CAS  Google Scholar 

  17. Wasserman, F. The development of adipose tissue. in Handbook of Physiology Vol. 5 (eds. Renold, A. & Cahill, G.) 87–100 (American Physiological Society, Washington, D.C., 1965).

    Google Scholar 

  18. Cinti, S. Anatomy of the adipose organ. Eat. Weight Disord. 5, 132–142 (2000).

    Article  CAS  Google Scholar 

  19. Sumi, T., Ishiko, O., Yoshida, H., Hyun, Y. & Ogita, S. Involvement of angiogenesis in weight-loss in tumor-bearing and diet-restricted animals. Int. J. Mol. Med. 8, 533–536 (2001).

    CAS  PubMed  Google Scholar 

  20. Crandall, D.L., Hausman, G.J. & Kral, J.G. A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 4, 211–232 (1997).

    Article  CAS  Google Scholar 

  21. Rupnick, M.A. et al. Adipose tissue mass can be regulated through the vasculature. Proc. Natl. Acad. Sci. USA 99, 10730–10735 (2002).

    Article  CAS  Google Scholar 

  22. Greene, A.K. et al. Endothelial-directed hepatic regeneration after partial hepatectomy. Ann. Surg. 237, 530–535 (2003).

    PubMed  PubMed Central  Google Scholar 

  23. Kolonin, M.G., Pasqualini, R. & Arap, W. Molecular addresses in blood vessels as targets for therapy. Curr. Opin. Chem. Biol. 5, 308–313 (2001).

    Article  CAS  Google Scholar 

  24. Pasqualini, R., Arap, W., Rajotte, D. & Ruoslahti, E. In vivo selection of phage-display libraries. in Phage Display: A Laboratory Manual (eds. Barbas, C., Burton, D., Silverman, G. & Scott, J.) 22.1–22.24 (Cold Spring Harbor Laboratory Press, New York, NY, 2000).

    Google Scholar 

  25. Kolonin, M.G., Pasqualini, R. & Arap, W. Teratogenicity induced by targeting a placental immunoglobulin transporter. Proc. Natl. Acad. Sci. USA 99, 13055–13060 (2002).

    Article  CAS  Google Scholar 

  26. Pasqualini, R. & Ruoslahti, E. Organ targeting in vivo using phage display peptide libraries. Nature 380, 364–366 (1996).

    Article  CAS  Google Scholar 

  27. Arap, W. et al. Steps toward mapping the human vasculature by phage display. Nat. Med. 8, 121–127 (2002).

    Article  CAS  Google Scholar 

  28. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    Article  CAS  Google Scholar 

  29. Licinio, J. et al. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc. Natl. Acad. Sci. USA 101, 4531–4536 (2004).

    Article  CAS  Google Scholar 

  30. Ellerby, H.M. et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med. 5, 1032–1038 (1999).

    Article  CAS  Google Scholar 

  31. McClung, J.K., Jupe, E.R., Liu, X.T. & Dell'Orco, R.T. Prohibitin: potential role in senescence, development, and tumor suppression. Exp. Gerontol. 30, 99–124 (1995).

    Article  CAS  Google Scholar 

  32. Lamers, M.C. & Bacher, S. Prohibitin and prohibitone, ubiquitous and abundant proteins that are reluctant to reveal their real identity. Int. Arch. Allergy Immunol. 113, 146–149 (1997).

    Article  CAS  Google Scholar 

  33. Coates, P.J. et al. Mammalian prohibitin proteins respond to mitochondrial stress and decrease during cellular senescence. Exp. Cell. Res. 265, 262–273 (2001).

    Article  CAS  Google Scholar 

  34. Nijtmans, L.G. et al. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J. 19, 2444–2451 (2000).

    Article  CAS  Google Scholar 

  35. Fusaro, G., Wang, S. & Chellappan, S. Differential regulation of Rb family proteins and prohibitin during camptothecin-induced apoptosis. Oncogene 21, 4539–4548 (2002).

    Article  CAS  Google Scholar 

  36. Terashima, M. et al. The IgM antigen receptor of B lymphocytes is associated with prohibitin and a prohibitin-related protein. EMBO J. 13, 3782–3792 (1994).

    Article  CAS  Google Scholar 

  37. Shimomura, I. et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: model for congenital generalized lipodystrophy. Genes Dev. 12, 3182–3194 (1998).

    Article  CAS  Google Scholar 

  38. Moitra, J. et al. Life without white fat: a transgenic mouse. Genes Dev. 12, 3168–3181 (1998).

    Article  CAS  Google Scholar 

  39. Zabolotny, J.M. et al. PTP1B regulates leptin signal transduction in vivo. Dev. Cell 2, 489–495 (2002).

    Article  CAS  Google Scholar 

  40. Bluher, M., Kahn, B.B. & Kahn, C.R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572–574 (2003).

    Article  Google Scholar 

  41. McConkey, D.J., Goodrich, D., Bucana, C. & Klostergaard, J. The human retinoblastoma gene product suppresses ceramide-induced apoptosis in human bladder tumor cells. Oncogene 13, 1693–1700 (1996).

    CAS  PubMed  Google Scholar 

  42. Zhu, Y. et al. Genomic interval engineering of mice identifies a novel modulator of triglyceride production. Proc. Natl. Acad. Sci. USA 97, 1137–1142 (2000).

    Article  CAS  Google Scholar 

  43. Rajotte, D. & Ruoslahti, E. Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display. J. Biol. Chem. 274, 11593–11598 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Koivunen, P. Dougherty, J. Cordella, S. Craig and C.D. Bucana for technical assistance; J. Folkman, H. Sage and J. Licinio for critical reading of the manuscript; and J. Trent, R. Benjamin, R.E. Pollock, J. Hannay, G. Fusaro and S. Chellappan for reagents. This work was supported by grants from the NIH (CA88106, CA078512, CA90270 and CA82976 to R.P.; CA103042, CA90270 and CA90810 to W.A.; HL51586 to L.C.), and awards from the AngelWorks, the Gilson-Longenbaugh Foundation, Juvenile Diabetes Research Foundation and the V Foundation (R.P. and W.A.). M.G.K. is the recipient of a fellowship from the Susan G. Komen Breast Cancer Foundation (BC996405). L.C. is also supported by the Betty Rutherford Chair for Diabetes Research from St. Luke's Episcopal Hospital and Baylor College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renata Pasqualini or Wadih Arap.

Ethics declarations

Competing interests

The University of Texas and researchers (M.G.K., R.P. and W.A.) have equity and royalty in NTTX Biotechnology, which is subjected to certain limitations and restrictions under university policy; the university manages the terms of these arrangements in accordance with its conflict-of-interest policies.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolonin, M., Saha, P., Chan, L. et al. Reversal of obesity by targeted ablation of adipose tissue. Nat Med 10, 625–632 (2004). https://doi.org/10.1038/nm1048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1048

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing