Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Historical Perspective
  • Published:

PPARs and the complex journey to obesity

Abstract

Obesity and the related disorders of dyslipidemia and diabetes (components of syndrome X) have become global health epidemics. Over the past decade, the elucidation of key regulators of energy balance and insulin signaling have revolutionized our understanding of fat and sugar metabolism and their intimate link. The three 'lipid-sensing' peroxisome proliferator–activated receptors (PPAR-α, PPAR-γ and PPAR-δ) exemplify this connection, regulating diverse aspects of lipid and glucose homeostasis, and serving as bona fide therapeutic targets. With molecular underpinnings now in place, new pharmacologic approaches to metabolic disease and new questions are emerging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Central controls of appetite and energy expenditure.
Figure 2: Tissue-tissue cross-talk in glucose and lipid homeostasis.
Figure 3: Metabolic integration by PPARs.

Similar content being viewed by others

References

  1. Stunkard, A., Foch, T. & Hrubec, Z. A twin study of human obesity. JAMA 256, 51–54 (1986).

    CAS  PubMed  Google Scholar 

  2. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).

    CAS  PubMed  Google Scholar 

  3. Tartaglia, L. et al. Identification and expression cloning of a leptin receptor OB-R. Cell 83, 1263–1271 (1995).

    CAS  PubMed  Google Scholar 

  4. Seeley, R. & Woods, S. Monitoring of stored and available fuel by the CNS: implications for obesity. Nat. Rev. Neurosci. 4, 901–909 (2003).

    CAS  PubMed  Google Scholar 

  5. Nakazato, M. et al. A role for ghrelin in the central regulation of feeding. Nature 409, 194–198 (2001).

    CAS  PubMed  Google Scholar 

  6. Drazen, D. & Woods, S. Peripheral signals in the control of satiety and hunger. Curr. Opin. Clin. Nutr. Metab. Care 6, 621–629 (2003).

    CAS  PubMed  Google Scholar 

  7. Batterham, R. et al. Gut hormone PYY3-36 physiologically inhibits food intake. Nature 418, 650–654 (2002).

    CAS  PubMed  Google Scholar 

  8. Turton, M. et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72 (1996).

    CAS  PubMed  Google Scholar 

  9. Bachman, E. et al. βAR signaling required for diet-induced thermogenesis and obesity resistance. Science 297, 843–845 (2002).

    CAS  PubMed  Google Scholar 

  10. Wu, Z. et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98, 115–124 (1999).

    CAS  PubMed  Google Scholar 

  11. Lin, J. et al. Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418, 797–801 (2002).

    CAS  PubMed  Google Scholar 

  12. Lowell, B. & Spiegelman, B. Towards a molecular understanding of adaptive thermogenesis. Nature 404, 652–660 (2000).

    CAS  PubMed  Google Scholar 

  13. Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    CAS  PubMed  Google Scholar 

  14. Fleury, C. et al. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 15, 269–272 (1997).

    CAS  PubMed  Google Scholar 

  15. Gimeno, R.E. et al. Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis. Diabetes 46, 900–906 (1997).

    CAS  PubMed  Google Scholar 

  16. Boss, O. et al. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 408, 39–42 (1997).

    CAS  PubMed  Google Scholar 

  17. Vidal-Puig, A., Solanes, G., Grujic, D., Flier, J.S. & Lowell, B.B. UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue. Biochem. Biophys. Res. Commun. 235, 79–82 (1997).

    CAS  PubMed  Google Scholar 

  18. Kopecky, J., Clarke, G., Enerback, S., Spiegelman, B. & Kozak, L.P. Expression of the mitochondrial uncoupling protein gene from the aP2 gene promoter prevents genetic obesity. J. Clin. Invest. 96, 2914–2923 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Clapham, J.C. et al. Mice overexpressing human uncoupling protein-3 in skeletal muscle are hyperphagic and lean. Nature 406, 415–418 (2000).

    CAS  PubMed  Google Scholar 

  20. Li, B. et al. Skeletal muscle respiratory uncoupling prevents diet-induced obesity and insulin resistance in mice. Nat. Med. 6, 1115–1120 (2000).

    CAS  PubMed  Google Scholar 

  21. Enerback, S. et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature 387, 90–94 (1997).

    CAS  PubMed  Google Scholar 

  22. Arsenijevic, D. et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat. Genet. 26, 435–439 (2000).

    CAS  PubMed  Google Scholar 

  23. Vidal-Puig, A.J. et al. Energy metabolism in uncoupling protein 3 gene knockout mice. J. Biol. Chem. 275, 16258–16266 (2000).

    CAS  PubMed  Google Scholar 

  24. Levine, J., Eberhardt, N. & Jensen, M. Role of nonexercise activity thermogenesis in resistance to fat gain in humans. Science 283, 212–214 (1999).

    CAS  PubMed  Google Scholar 

  25. Ullrich, A. et al. Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313, 756–761 (1985).

    CAS  PubMed  Google Scholar 

  26. Ebina, Y. et al. The human insulin receptor cDNA: the structural basis for hormone-activated transmembrane signaling. Cell 40, 747–758 (1985).

    CAS  PubMed  Google Scholar 

  27. Sun, X.J. et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 352, 73–77 (1991).

    CAS  PubMed  Google Scholar 

  28. Sun, X.J. et al. Role of IRS-2 in insulin and cytokine signaling. Nature 377, 173–177 (1995).

    CAS  PubMed  Google Scholar 

  29. Accili, D. et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nature Genet. 12, 106–109 (1996).

    CAS  PubMed  Google Scholar 

  30. Michael, M. et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 6, 87–97 (2000).

    CAS  PubMed  Google Scholar 

  31. Kulkarni, R. et al. Tissue-specific knockout of the insulin receptor in pancreatic β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96, 329–339 (1999).

    CAS  PubMed  Google Scholar 

  32. Bruning, J. et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 2, 559–569 (1998).

    CAS  PubMed  Google Scholar 

  33. Fernandez, A. et al. Functional inactivation of the IGF-1 and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev. 15, 1926–1934 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Mu, J., Brozinick, J., Valladares, O., Bucan, M. & Birnbaum, M. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell 7, 1085–1094 (2001).

    CAS  PubMed  Google Scholar 

  35. Bluher, M., Kahn, B. & Kahn, R. Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299, 572–574 (2003).

    PubMed  Google Scholar 

  36. Lauro, D. et al. Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue. Nat. Genet. 20, 294–298 (1998).

    CAS  PubMed  Google Scholar 

  37. Guerra, C. et al. Brown adipose tissue-specific insulin receptor knockout shows a diabetic phenotype without insulin resistance. J. Clin. Invest. 108, 1205–1213 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tamemoto, H. et al. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature 372, 182–186 (1994).

    CAS  PubMed  Google Scholar 

  39. Withers, D. et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391, 900–904 (1998).

    CAS  PubMed  Google Scholar 

  40. Shulman, G.I. Cellular mechanisms of insulin resistance. J. Clin. Invest. 106, 171–176 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dresner, A. et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J. Clin. Invest. 103, 253–259 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Perseghin, G. et al. Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H–13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 48, 1600–1606 (1999).

    CAS  PubMed  Google Scholar 

  43. Petersen, K.F. et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300, 1140–1142 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kim, J.K. et al. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc. Natl. Acad. Sci. USA 98, 7522–7527 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Yu, C. et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem. 277, 50230–50236 (2002).

    CAS  PubMed  Google Scholar 

  46. Issemann, I. & Green, S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347, 645–650 (1990).

    CAS  PubMed  Google Scholar 

  47. Dreyer, C. et al. Control of the peroxisomal β-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68, 879–887 (1992).

    CAS  PubMed  Google Scholar 

  48. Kliewer, S.A. et al. Differential expression and activation of a family of murine peroxisome proliferator-activated receptors. Proc. Natl. Acad. Sci USA 91, 7355–7359 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Chawla, A., Repa, J.J., Evans, R.M. & Mangelsdorf, D.J. Nuclear receptors and lipid physiology: opening the X-files. Science 294, 1866–1870 (2001).

    CAS  PubMed  Google Scholar 

  50. Rosen, E.D., Walkey, C.J., Puigserver, P. & Spiegelman, B.M. Transcriptional regulation of adipogenesis. Genes Dev. 14, 1293–1307 (2000).

    CAS  PubMed  Google Scholar 

  51. Tontonoz, P., Hu, E. & Spiegelman, B.M. Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994).

    CAS  PubMed  Google Scholar 

  52. Barak, Y. et al. PPARγ is required for placental, cardiac, and adipose tissue development. Mol. Cell 4, 585–595 (1999).

    CAS  PubMed  Google Scholar 

  53. Rosen, E.D. et al. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4, 611–617 (1999).

    CAS  PubMed  Google Scholar 

  54. Kubota, N. et al. PPARγ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol. Cell 4, 597–609 (1999).

    CAS  PubMed  Google Scholar 

  55. Agarwal, A.K. & Garg, A. A novel heterozygous mutation in peroxisome proliferator-activated receptor-γ gene in a patient with familial partial lipodystrophy. J. Clin. Endocrinol. Metab. 87, 408–411 (2002).

    CAS  PubMed  Google Scholar 

  56. Hegele, R.A., Cao, H., Frankowski, C., Mathews, S.T. & Leff, T. PPARG F388L, a transactivation-deficient mutant, in familial partial lipodystrophy. Diabetes 51, 3586–3590 (2002).

    CAS  PubMed  Google Scholar 

  57. Savage, D.B. et al. Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-γ. Diabetes 52, 910–917 (2003).

    CAS  PubMed  Google Scholar 

  58. Wu, Z. et al. Cross-regulation of C/EBP and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol. Cell 3, 151–158 (1999).

    CAS  PubMed  Google Scholar 

  59. Rosen, E.D. et al. C/EBPalpha induces adipogenesis through PPARγ: a unified pathway. Genes Dev. 16, 22–26 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Forman, B.M. et al. Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 83, 803–812 (1995).

    CAS  PubMed  Google Scholar 

  61. Lehmann, J.M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPARγ). J. Biol. Chem. 270, 12953–12956 (1995).

    CAS  PubMed  Google Scholar 

  62. Yamauchi, T. et al. The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance. J. Biol. Chem. 276, 41245–41254 (2001).

    CAS  PubMed  Google Scholar 

  63. Guan, H.-P. et al. A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat. Med. 8, 1122–1128 (2002).

    CAS  PubMed  Google Scholar 

  64. Peraldi, P., Xu, M. & Spiegelman, B.M. Thiazolidinediones block tumor necrosis factor-α-induced inhibition of insulin signaling. J. Clin. Invest. 100, 1863–1869 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Steppan, C.M. et al. The hormone resistin links obesity to diabetes. Nature 409, 307–312 (2001).

    CAS  PubMed  Google Scholar 

  66. Rajala, M.W., Obici, S., Scherer, P.E. & Rossetti, L. Adipose-derived resistin and gut-derived resistin-like molecule-β selectively impair insulin action on glucose production. J. Clin. Invest. 111, 225–300 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Combs, T.P., Berg, A.H., Obici, S., Scherer, P.E. & Rossetti, L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J. Clin. Invest. 108, 1875–1881 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Berg, A.H., Combs, T.P., Du, X., Brownlee, M. & Scherer, P.E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7, 947–953 (2001).

    CAS  PubMed  Google Scholar 

  69. Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941–946 (2001).

    CAS  PubMed  Google Scholar 

  70. Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002).

    CAS  PubMed  Google Scholar 

  71. Yamauchi, T. et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762–769 (2003).

    CAS  PubMed  Google Scholar 

  72. Ribon, V., Johnson, J.H., Camp, H.S. & Saltiel, A.R. Thiazolidinediones and insulin resistance: peroxisome proliferator activated receptor γ activation stimulates expression of the CAP gene. Proc. Natl. Acad. Sci. USA 95, 14751–14756 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Burant, C.F. et al. Troglitazone action is independent of adipose tissue. J. Clin. Invest. 100, 2900–2908 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Chao, L. et al. Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J. Clin. Invest. 106, 1221–1228 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Gavrilova, O. et al. Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J. Biol. Chem. 278, 34268–34276 (2003).

    CAS  PubMed  Google Scholar 

  76. Kim, J.K. et al. Differential effects of rosiglitazone on skeletal muscle and liver insulin resistance in A-ZIP/F-1 fatless mice. Diabetes 52, 1311–1318 (2003).

    CAS  PubMed  Google Scholar 

  77. Miles, P.D., Barak, Y., He, W., Evans, R.M. & Olefsky, J.M. Improved insulin-sensitivity in mice heterozygous for PPAR-γ deficiency. J. Clin. Invest. 105, 287–292 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Berger, J.P. et al. Distinct properties and advantages of a novel peroxisome proliferator-activated protein γ selective modulator. Mol. Endocrinol. 17, 662–676 (2003).

    CAS  PubMed  Google Scholar 

  79. Rangwala, S.M. et al. Genetic modulation of PPARg phosphorylation regulates insulin sensitivity. Dev. Cell 5, 657–663 (2003).

    CAS  PubMed  Google Scholar 

  80. Ristow, M., Muller-Wieland, D., Pfeiffer, A., Krone, W. & Kahn, R. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N. Engl. J. Med. 339, 953–959 (1998).

    CAS  PubMed  Google Scholar 

  81. Matsusue, K. et al. Liver-specific disruption of PPARγ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J. Clin. Invest. 111, 737–747 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. He, W. et al. Adipose-specific peroxisome proliferator-activated receptor γ knockout causes insulin resistance in fat and liver but not in muscle. Proc. Natl. Acad. Sci. USA 100, 15712–15717 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Koutnikova, H. et al. Compensation by the muscle limits the metabolic consequences of lipodystrophy in PPAR γ hypomorphic mice. Proc. Natl. Acad. Sci. USA 100, 14457–14462 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hevener, A.L. et al. Muscle-specific Pparg deletion causes insulin resistance. Nat Med. 9, 1491–1497 (2003).

    CAS  PubMed  Google Scholar 

  85. Norris, A.W. et al. Muscle-specific PPARγ-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J. Clin. Invest. 112, 608–618 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Reddy, J.K. & Hashimoto, T. Peroxisomal β-oxidation and peroxisome proliferator-activated receptor α: an adaptive metabolic system. Annu. Rev. Nutr. 21, 193–230 (2001).

    CAS  PubMed  Google Scholar 

  87. Kersten, S. et al. Peroxisome proliferator-activated receptor α mediates the adaptive response to fasting. J. Clin. Invest. 103, 1489–1498 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Guerre-Millo, M. et al. Peroxisome proliferator-activated receptor α activators improve insulin sensitivity and reduce adiposity. J. Biol. Chem. 275, 16638–16642 (2000).

    CAS  PubMed  Google Scholar 

  89. Chou, C.J. et al. WY14,643, a peroxisome proliferator-activated receptor α (PPARα) agonist, improves hepatic and muscle steatosis and reverses insulin resistance in lipoatrophic A-ZIP/F-1 mice. J. Biol. Chem. 277, 24484–24489 (2002).

    CAS  PubMed  Google Scholar 

  90. Kim, H. et al. Peroxisome proliferator-activated receptor-α agonist treatment in a transgenic model of type 2 diabetes reverses the lipotoxic state and improves glucose homeostasis. Diabetes 52, 1770–1778 (2003).

    CAS  PubMed  Google Scholar 

  91. Peters, J.M. et al. Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β(δ). Mol. Cell. Biol. 20, 5119–5128 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Barak, Y. et al. Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer. Proc. Natl. Acad. Sci. USA 99, 303–308 (2002).

    CAS  PubMed  Google Scholar 

  93. Oliver, W.R. et al. A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc. Natl. Acad. Sci. USA 98, 5306–5311 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Wang, Y.-X. et al. Peroxisome-proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113, 159–170 (2003).

    CAS  PubMed  Google Scholar 

  95. Puigserver, P. et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92, 829–839 (1998).

    CAS  PubMed  Google Scholar 

  96. Muoio, D.M. et al. Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) α knock-out mice. Evidence for compensatory regulation by PPAR δ. J. Biol. Chem. 277, 26089–26097 (2002).

    CAS  PubMed  Google Scholar 

  97. Dressel, U. et al. The peroxisome proliferator-activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol. Endocrinol. 17, 2477–2493 (2003).

    CAS  PubMed  Google Scholar 

  98. Luquet, S. et al. Peroxisome proliferator-activated receptor δ controls muscle development and oxidative capability. FASEB J. 17, 2299–2301 (2003).

    CAS  PubMed  Google Scholar 

  99. Tanaka, T. et al. Activation of peroxisome proliferator-activated receptor β induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc. Natl. Acad. Sci. USA 100, 15924–15929 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Gupta, R. et al. Activation of nuclear hormone receptor peroxisome proliferator-activated receptor-δ accelerates intestinal adenoma growth. Nat. Med. 10, 245–247 (2004).

    CAS  PubMed  Google Scholar 

  101. Saez, E. et al. Activators of the nuclear receptor PPARγ enhance colon polyp formation. Nat. Med. 4, 1058–1061 (1998).

    CAS  PubMed  Google Scholar 

  102. Sarraf, P. et al. Differentiation and reversal of malignant changes in colon cancer through PPARγ. Nat. Med. 4, 1046–1052 (1998).

    CAS  PubMed  Google Scholar 

  103. Lefebvre, A.-M. et al. Activation of the peroxisome proliferator-activated receptor γ promotes the development of colon tumors in C57BL/6J-APCMin/+ mice. Nat. Med. 4, 1053–1057 (1998).

    CAS  PubMed  Google Scholar 

  104. Lee, C.H. et al. Transcriptional repression of atherogenic inflammation: modulation by PPARδ. Science 302, 453–457 (2003).

    CAS  PubMed  Google Scholar 

  105. Ricote, M., Valledor, A.F. & Glass, C.K. Decoding transcriptional programs regulated by PPARs and LXRs in the macrophage: effects on lipid homeostasis, inflammation, and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 24, 230–239 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Yu and W. He for critical reading of this manuscript, J. Simon for graphic artwork, and L. Ong and E. Stevens for administrative assistance. R.M.E. is an Investigator of the Howard Hughes Medical Institute at the Salk Institute for Biological Studies, and March of Dimes Chair in Molecular and Developmental Biology. G.D.B. is supported by National Institutes of Health Public Health Services Grant CA09370-23. This work was supported by the Howard Hughes Medical Institute, the Hilblom Foundation and grant U19DK62434 from the National Institutes of Health Nuclear Receptor Signaling Atlas orphan receptor program. We apologize to our colleagues that many primary references could not be included because of space limitations.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, R., Barish, G. & Wang, YX. PPARs and the complex journey to obesity. Nat Med 10, 355–361 (2004). https://doi.org/10.1038/nm1025

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing