Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acceleration of intestinal polyposis through prostaglandin receptor EP2 in ApcΔ716 knockout mice

Abstract

Arachidonic acid is metabolized to prostaglandin H2 (PGH2) by cyclooxygenase (COX). COX-2, the inducible COX isozyme, has a key role in intestinal polyposis1,2. Among the metabolites of PGH2, PGE2 is implicated in tumorigenesis because its level is markedly elevated in tissues of intestinal adenoma and colon cancer3. Here we show that homozygous deletion of the gene encoding a cell-surface receptor of PGE2, EP2, causes decreases in number and size of intestinal polyps in ApcΔ716 mice (a mouse model for human familial adenomatous polyposis). This effect is similar to that of COX-2 gene disruption. We also show that COX-2 expression is boosted by PGE2 through the EP2 receptor via a positive feedback loop. Homozygous gene knockout for other PGE2 receptors, EP1 or EP3, did not affect intestinal polyp formation in ApcΔ716 mice. We conclude that EP2 is the major receptor mediating the PGE2 signal generated by COX-2 upregulation in intestinal polyposis, and that increased cellular cAMP stimulates expression of more COX-2 and vascular endothelial growth factor in the polyp stroma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: COX-2 and EP receptors in ApcΔ716 polyps.
Figure 2: Effects of EP gene disruptions on ApcΔ716 polyps.
Figure 3: Effects of COX-2 or EP gene disruption on gene expression.

Similar content being viewed by others

References

  1. Taketo, M.M. Cyclooxygenase-2 inhibitors in tumorigenesis. Part I. J. Natl. Cancer Inst. 90, 1529–1536 (1998).

    Article  Google Scholar 

  2. Taketo, M.M. Cyclooxygenase-2 inhibitors in tumorigenesis. Part II. J. Natl. Cancer Inst. 90, 1609–1620 (1998).

    Article  Google Scholar 

  3. Yang, V.W. et al. Size-dependent increase in prostanoid levels in adenomas of patients with familial adenomatous polyposis. Cancer Res. 58, 1750–1753 (1998).

    PubMed  Google Scholar 

  4. DeWitt, D.L. & Smith, W.L. Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence. Proc. Natl. Acad. Sci. USA 85, 1412–1416 (1988).

    Article  Google Scholar 

  5. Xie, W.L., Chipman, J.G., Robertson, D.L., Erikson, R.L. & Simmons, D.L. Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc. Natl. Acad. Sci. USA 88, 2692–2696 (1991).

    Article  Google Scholar 

  6. Kujubu, D.A., Fletcher, B.S., Varnum, B.C., Lim, R.W. & Herschman, H.R. TIS10, a phorbol ester tumor promoter-inducible mRNA from Swiss 3T3 cells, encodes a novel prostaglandin synthase/cyclooxygenase homologue. J. Biol. Chem. 266, 12866–12872 (1991).

    PubMed  Google Scholar 

  7. Kargman, S.L. et al. Expression of prostaglandin G/H synthase-1 and -2 protein in human colon cancer. Cancer Res. 55, 2556–2559 (1995).

    PubMed  Google Scholar 

  8. Oshima, M. et al. Suppression of intestinal polyposis in ApcΔ716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87, 803–809 (1996).

    Article  Google Scholar 

  9. Oshima, M. et al. Loss of Apc heterozygosity and abnormal tissue building in nascent intestinal polyps in mice carrying a truncated Apc gene. Proc. Natl. Acad. Sci. USA 92, 4482–4486 (1995).

    Article  Google Scholar 

  10. Gupta, R.A. & DuBois, R.N. Aspirin, NSAIDS, and colon cancer prevention: mechanisms? Gastroenterol. 114, 1095–1098 (1998).

    Article  Google Scholar 

  11. Steinbach, G. et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med. 342, 1946–1952 (2000).

    Article  Google Scholar 

  12. Coleman, R.A., Smith, W.L. & Narumiya, S. International Union of Pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol. Rev. 46, 205–229 (1994).

    PubMed  Google Scholar 

  13. Morimoto, K. et al. Cellular localization of mRNAs for prostaglandin E receptor subtypes in mouse gastrointestinal tract. Am. J. Physiol. 272, G681–G687 (1997).

    PubMed  Google Scholar 

  14. Ushikubi, F. et al. Impaired febrile response in mice lacking the prostaglandin E receptor subtype EP3 . Nature 395, 281–284 (1998).

    Article  Google Scholar 

  15. Segi, E. et al. Patent ductus arteriosus and neonatal death in prostaglandin receptor EP4-deficient mice. Biochem. Biophys. Res. Commun. 246, 7–12 (1998).

    Article  Google Scholar 

  16. Tjandrawinata, R.R., Dahiya, R. & Hughes-Fulford, M. Induction of cyclo-oxygenase-2 mRNA by prostaglandin E2 in human prostatic carcinoma cells. Br. J. Cancer 75, 1111–1118 (1997).

    Article  Google Scholar 

  17. Hinz, B., Brune, K. & Pahl, A. Cyclooxygenase-2 expression in lipopolysaccharide-stimulated human monocytes is modulated by cyclicAMP, prostaglandin E2, and nonsteroidal anti-inflammatory drugs. Biochem. Biophys. Res. Commun. 278, 790–796 (2000).

    Article  Google Scholar 

  18. Williams, C.S., Tsujii, M., Reese, J., Dey, S.K. & DuBois, R.N. Host cyclooxygenase-2 modulates carcinoma growth. J. Clin. Invest. 105, 1589–1594 (2000).

    Article  Google Scholar 

  19. Cheng, T., Cao, W., Wen, R., Steinberg, R.H. & LaVail, M.M. Prostaglandin E2 induces vascular endothelial growth factor and basic fibroblast growth factor mRNA expression in cultured rat Muller cells. Invest. Ophthalmol. Vis. Sci. 39, 581–591 (1998).

    PubMed  Google Scholar 

  20. Holash, J., Wiegand, S.J. & Yancopoulos, G.D. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18, 5356–5362 (1999).

    Article  Google Scholar 

  21. Hewitt, R.E. et al. Laminin and collagen IV subunit distribution in normal and neoplastic tissues of colorectum and breast. Br. J. Cancer 75, 221–229 (1997).

    Article  Google Scholar 

  22. Daniel, T.O., Liu, H., Morrow, J.D., Crews, B.C. & Marnett, L.J. Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Res. 59, 4574–4577 (1999).

    Google Scholar 

  23. Prescott, S.M. & White, R.L. Self-promotion? Intimate connections between APC and prostaglandin H synthase-2. Cell 87, 783–786 (1996).

    Article  Google Scholar 

  24. Watanabe, K. et al. Role of the prostaglandin E receptor subtype EP1 in colon carcinogenesis. Cancer Res. 59, 5093–5096 (1999).

    PubMed  Google Scholar 

  25. Yamada, Y. et al. Frequent β-catenin gene mutations and accumulations of the protein in the putative preneoplastic lesions lacking macroscopic aberrant crypt foci appearance, in rat colon carcinogenesis. Cancer Res. 60, 3323–3327 (2000)

    PubMed  Google Scholar 

  26. Takaku, K et al. Suppression of intestinal polyposis in ApcΔ716 knockout mice by an additional mutation in the cytosolic phospholipase A2 gene. J. Biol. Chem. 275, 34013–34016 (2000)

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Hioki and N. Shimozawa for breeding mice; and H. Seno, S. Iwasaki and S. Hagiwara for assistance. This study was supported in part by the Joint Research Fund between the University of Tokyo and Banyu Pharmaceutical, grants from the Ministry of Education, Science, Sports and Culture (MESSC; Cancer Research) and the Organization for Pharmaceutical Safety and Research (OPSR), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto M. Taketo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sonoshita, M., Takaku, K., Sasaki, N. et al. Acceleration of intestinal polyposis through prostaglandin receptor EP2 in ApcΔ716 knockout mice. Nat Med 7, 1048–1051 (2001). https://doi.org/10.1038/nm0901-1048

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0901-1048

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing