Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

International AIDS Society global scientific strategy: towards an HIV cure 2016

Abstract

Antiretroviral therapy is not curative. Given the challenges in providing lifelong therapy to a global population of more than 35 million people living with HIV, there is intense interest in developing a cure for HIV infection. The International AIDS Society convened a group of international experts to develop a scientific strategy for research towards an HIV cure. This Perspective summarizes the group's strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cases of transient or sustained remission off ART.
Figure 2: Mechanisms that maintain HIV latency in resting CD4+ T cells.
Figure 3: The use of targeted nucleases against HIV.

Similar content being viewed by others

References

  1. UN Joint Programme on HIV/AIDS (UNAIDS). The Gap Report, 2014; available at: http://www.refworld.org/docid/53f1e1604.html (accessed 23 April 2015).

  2. Barré-Sinoussi, F., Ross, A.L. & Delfraissy, J.F. Past, present and future: 30 years of HIV research. Nat. Rev. Microbiol. 11, 877–883 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Deeks, S.G. et al. International AIDS Society Scientific Working Group on HIV Cure. Towards an HIV cure: a global scientific strategy. Nat. Rev. Immunol. 12, 607–614 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Van Lint, C., Emiliani, S., Ott, M. & Verdin, E. Transcriptional activation and chromatin remodeling of the HIV-1 promoter in response to histone acetylation. EMBO J. 15, 1112–1120 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Coull, J.J. et al. The human factors YY1 and LSF repress the human immunodeficiency virus type 1 long terminal repeat via recruitment of histone deacetylase 1. J. Virol. 74, 6790–6799 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tyagi, M., Pearson, R.J. & Karn, J. Establishment of HIV latency in primary CD4+ cells is due to epigenetic transcriptional silencing and P-TEFb restriction. J. Virol. 84, 6425–6437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Han, Y. et al. Orientation-dependent regulation of integrated HIV-1 expression by host gene transcriptional readthrough. Cell Host Microbe 4, 134–146 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ho, Y.C. et al. Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. Cell 155, 540–551 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Buzón, M.J. et al. HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat. Med. 16, 460–465 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Hatano, H. et al. Increase in 2-long terminal repeat circles and decrease in D-dimer after raltegravir intensification in patients with treated HIV infection: a randomized, placebo-controlled trial. J. Infect. Dis. 208, 1436–1442 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fletcher, C.V. et al. Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues. Proc. Natl. Acad. Sci. USA 111, 2307–2312 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lorenzo-Redondol, R. et al. Persistent HIV-1 replication maintains the HIV-1 reservoir during therapy. Nature (in the press).

  13. Kearney, M.F. et al. Lack of detectable HIV-1 molecular evolution during suppressive antiretroviral therapy. PLoS Pathog. 10, e1004010 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Josefsson, L. et al. The HIV-1 reservoir in eight patients on long-term suppressive antiretroviral therapy is stable with few genetic changes over time. Proc. Natl. Acad. Sci. USA 110, E4987–E4996 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Archin, N.M. et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 487, 482–485 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Søgaard, O.S. et al. The depsipeptide romidepsin reverses HIV-1 latency in vivo. PLoS Pathog. 11, e1005142 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Elliott, J.H. et al. Short-term administration of disulfiram for reversal of latent HIV infection: a phase 2 dose-escalation study. Lancet HIV 2, e520–e529 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rasmussen, T.A. et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV 1, e13–e21 (2014).

    Article  PubMed  Google Scholar 

  19. Shan, L. et al. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 36, 491–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Spina, C.A. et al. An in-depth comparison of latent HIV-1 reactivation in multiple cell model systems and resting CD4+ T cells from aviremic patients. PLoS Pathog. 9, e1003834 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Laird, G.M. et al. Ex vivo analysis identifies effective HIV-1 latency-reversing drug combinations. J. Clin. Invest. 125, 1901–1912 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Elliott, J.H. et al. Activation of HIV transcription with short-course vorinostat in HIV-infected patients on suppressive antiretroviral therapy. PLoS Pathog. 10, e1004473 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Praag, R.M. et al. OKT3 and IL-2 treatment for purging of the latent HIV-1 reservoir in vivo results in selective long-lasting CD4+ T cell depletion. J. Clin. Immunol. 21, 218–226 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Bui, J.K., Mellors, J.W. & Cillo, A.R. HIV-1 virion production from single inducible proviruses following T-cell activation ex vivo. J. Virol. 90, 1673–1676 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Vandergeeten, C. et al. Interleukin-7 promotes HIV persistence during antiretroviral therapy. Blood 121, 4321–4329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jones, R.B. et al. Histone deacetylase inhibitors impair the elimination of HIV-infected cells by cytotoxic T-lymphocytes. PLoS Pathog. 10, e1004287 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mousseau, G., Mediouni, S. & Valente, S.T. Targeting HIV transcription: the quest for a functional cure. Curr. Top. Microbiol. Immunol. 389, 121–145 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mousseau, G. et al. The Tat inhibitor didehydro-cortistatin A prevents HIV-1 reactivation from latency. MBio 6, e00465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barouch, D.H. & Deeks, S.G. Immunologic strategies for HIV-1 remission and eradication. Science 345, 169–174 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chomont, N. et al. HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation. Nat. Med. 15, 893–900 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yukl, S.A. et al. The distribution of HIV DNA and RNA in cell subsets differs in gut and blood of HIV-positive patients on ART: implications for viral persistence. J. Infect. Dis. 208, 1212–1220 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chéret, A. et al. OPTIPRIM ANRS-147 Study Group. Combined ART started during acute HIV infection protects central memory CD4+ T cells and can induce remission. J. Antimicrob. Chemother. 70, 2108–2120 (2015).

    PubMed  Google Scholar 

  33. Buzon, M.J. et al. HIV-1 persistence in CD4+ T cells with stem cell–like properties. Nat. Med. 20, 139–142 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Connick, E. et al. CTL fail to accumulate at sites of HIV-1 replication in lymphoid tissue. J. Immunol. 178, 6975–6983 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Fukazawa, Y. et al. B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers. Nat. Med. 21, 132–139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Banga, R. et al. PD-1 and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals. Nat. Med. http://dx.doi.org/10.1038/nm.4113 (2016).

  37. Calantone, N. et al. Tissue myeloid cells in SIV-infected primates acquire viral DNA through phagocytosis of infected T cells. Immunity 41, 493–502 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Churchill, M.J., Cowley, D.J., Wesselingh, S.L., Gorry, P.R. & Gray, L.R. HIV-1 transcriptional regulation in the central nervous system and implications for HIV cure research. J. Neurovirol. 21, 290–300 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Honeycutt, J.B. et al. Macrophages sustain HIV replication in vivo independently of T cells. J. Clin. Invest. 126, 1353–1366 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wagner, T.A. et al. HIV latency. Proliferation of cells with HIV integrated into cancer genes contributes to persistent infection. Science 345, 570–573 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Maldarelli, F. et al. HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345, 179–183 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Imamichi, H. et al. Lifespan of effector memory CD4+ T cells determined by replication-incompetent integrated HIV-1 provirus. AIDS 28, 1091–1099 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Simonetti, F.R. et al. Clonally expanded CD4+ T cells can produce infectious HIV-1 in vivo. Proc. Natl. Acad. Sci. USA 113, 1883–1888 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Evans, V.A. et al. Myeloid dendritic cells induce HIV-1 latency in non-proliferating CD4+ T cells. PLoS Pathog. 9, e1003799 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Casazza, J.P. et al. VRC 101 Study Team. Therapeutic vaccination expands and improves the function of the HIV-specific memory T-cell repertoire. J. Infect. Dis. 207, 1829–1840 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hansen, S.G. et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 340, 1237874 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Hansen, S.G. et al. Immune clearance of highly pathogenic SIV infection. Nature 502, 100–104 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hansen, S.G. et al. Broadly targeted CD8+ T cell responses restricted by major histocompatibility complex E. Science 351, 714–720 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Halper-Stromberg, A. et al. Broadly neutralizing antibodies and viral inducers decrease rebound from HIV-1 latent reservoirs in humanized mice. Cell 158, 989–999 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barouch, D.H. et al. Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys. Nature 503, 224–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lynch, R.M. et al. VRC 601 Study Team. Virologic effects of broadly neutralizing antibody VRC01 administration during chronic HIV-1 infection. Sci. Transl. Med. 7, 319ra206 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Caskey, M. et al. Viraemia suppressed in HIV-1-infected humans by broadly neutralizing antibody 3BNC117. Nature 522, 487–491 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chun, T.W. et al. Broadly neutralizing antibodies suppress HIV in the persistent viral reservoir. Proc. Natl. Acad. Sci. USA 111, 13151–13156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Euler, Z. & Alter, G. Exploring the potential of monoclonal antibody therapeutics for HIV-1 eradication. AIDS Res. Hum. Retroviruses 31, 13–24 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pegu, A. et al. Activation and lysis of human CD4 cells latently infected with HIV-1. Nat. Commun. 6, 8447 (2015).

    Article  CAS  PubMed  Google Scholar 

  56. Sung, J.A. et al. Dual-affinity re-targeting proteins direct T cell–mediated cytolysis of latently HIV-infected cells. J. Clin. Invest. 125, 4077–4090 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Micci, L. et al. Interleukin-21 combined with ART reduces inflammation and viral reservoir in SIV-infected macaques. J. Clin. Invest. 125, 4497–4513 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Henrich, T.J. et al. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: report of 2 cases. Ann. Intern. Med. 161, 319–327 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Stock, P.G. et al. Reduction of HIV persistence following transplantation in HIV-infected kidney transplant recipients. Am. J. Transplant. 14, 1136–1141 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wightman, F. et al. Effect of ipilimumab on the HIV reservoir in an HIV-infected individual with metastatic melanoma. AIDS 29, 504–506 (2015).

    Article  PubMed  Google Scholar 

  61. International HIV Controllers Study. et al. The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 330, 1551–1557 (2010).

  62. Sáez-Cirión, A. et al. ANRS VISCONTI Study Group. Post-treatment HIV-1 controllers with a long-term virological remission after the interruption of early initiated antiretroviral therapy ANRS VISCONTI Study. PLoS Pathog. 9, e1003211 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Frange, P. et al. ANRS EPF-CO10 Pediatric Cohort and the ANRS EP47 VISCONTI study group. HIV-1 virological remission lasting more than 12 years after interruption of early antiretroviral therapy in a perinatally infected teenager enrolled in the French ANRS EPF-CO10 paediatric cohort: a case report. Lancet HIV 3, e49–e54 (2016).

    Article  PubMed  Google Scholar 

  64. Whitney, J.B. et al. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys. Nature 512, 74–77 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Denton, P.W. et al. Targeted cytotoxic therapy kills persisting HIV infected cells during ART. PLoS Pathog. 10, e1003872 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Del Prete, G.Q. et al. Elevated plasma viral loads in romidepsin-treated simian immunodeficiency virus–infected rhesus macaques on suppressive combination antiretroviral therapy. Antimicrob. Agents Chemother. 60, 1560–1572 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Marsden, M.D. et al. HIV latency in the humanized BLT mouse. J. Virol. 86, 339–347 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Persaud, D. et al. Pediatric HIV/AIDS Cohort Study. Influence of age at virologic control on peripheral blood human immunodeficiency virus reservoir size and serostatus in perinatally infected adolescents. JAMA Pediatr. 168, 1138–1146 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ananworanich, J. et al. HIV-NAT 194 Study Group. Reduced markers of HIV persistence and restricted HIV-specific immune responses after early antiretroviral therapy in children. AIDS 28, 1015–1020 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Uprety, P. et al. Cell-associated HIV-1 DNA and RNA decay dynamics during early combination antiretroviral therapy in HIV-1-infected infants. Clin. Infect. Dis. 61, 1862–1870 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Muenchhoff, M., Prendergast, A.J. & Goulder, P.J. Immunity to HIV in early life. Front. Immunol. 5, 391 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hütter, G. et al. Long-term control of HIV by CCR5 Δ32/Δ32 stem-cell transplantation. N. Engl. J. Med. 360, 692–698 (2009).

    Article  PubMed  Google Scholar 

  73. Cannon, P. & June, C. Chemokine receptor 5 knockout strategies. Curr. Opin. HIV AIDS 6, 74–79 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. DiGiusto, D.L. et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34+ cells in patients undergoing transplantation for AIDS-related lymphoma. Sci. Transl. Med. 2, 36ra43 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Younan, P.M. et al. Positive selection of mC46-expressing CD4+ T cells and maintenance of virus specific immunity in a primate AIDS model. Blood 122, 179–187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hu, W. et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc. Natl. Acad. Sci. USA 111, 11461–11466 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kitchen, S.G. et al. In vivo suppression of HIV by antigen specific T cells derived from engineered hematopoietic stem cells. PLoS Pathog. 8, e1002649 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Grupp, S.A. et al. Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Maude, S.L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Balazs, A.B. et al. Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat. Med. 20, 296–300 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gardner, M.R. et al. AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature 519, 87–91 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Smith, D.J. et al. Genetic engineering of hematopoietic stem cells to generate invariant natural killer T cells. Proc. Natl. Acad. Sci. USA 112, 1523–1528 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tebas, P. et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370, 901–910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Beard, B.C. et al. Efficient and stable MGMT-mediated selection of long-term repopulating stem cells in nonhuman primates. J. Clin. Invest. 120, 2345–2354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Laird, G.M. et al. Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay. PLoS Pathog. 9, e1003398 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lehrman, G. et al. Depletion of latent HIV-1 infection in vivo: a proof-of-concept study. Lancet 366, 549–555 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Crooks, A.M. et al. Precise quantitation of the latent HIV-1 reservoir: implications for eradication strategies. J. Infect. Dis. 212, 1361–1365 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cillo, A.R. et al. Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. Proc. Natl. Acad. Sci. USA 111, 7078–7083 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Procopio, F.A. et al. A novel assay to measure the magnitude of the inducible viral reservoir in HIV-infected individuals. EBioMedicine 2, 872–881 (2015).

    Article  Google Scholar 

  90. Metcalf Pate, K.A. et al. A murine viral outgrowth assay to detect residual HIV type 1 in patients with undetectable viral loads. J. Infect. Dis. 212, 1387–1396 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Eriksson, S. et al. Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. PLoS Pathog. 9, e1003174 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Burbelo, P.D. et al. HIV antibody characterization as a method to quantify reservoir size during curative interventions. J. Infect. Dis. 209, 1613–1617 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Williams, J.P. et al. HIV-1 DNA predicts disease progression and post-treatment virological control. eLife 3, e03821 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, J.Z. et al. The size of the expressed HIV reservoir predicts timing of viral rebound after treatment interruption. AIDS 30, 343–353 (2016).

    CAS  PubMed  Google Scholar 

  95. Persaud, D. & Luzuriaga, K. Absence of HIV-1 after treatment cessation in an infant. N. Engl. J. Med. 370, 678 (2014).

    Article  PubMed  Google Scholar 

  96. Santangelo, P.J. et al. Whole-body immunoPET reveals active SIV dynamics in viremic and antiretroviral therapy-treated macaques. Nat. Methods 12, 427–432 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hatano, H. et al. Cell-based measures of viral persistence are associated with immune activation and programmed cell death protein 1 (PD-1)-expressing CD4+ T cells. J. Infect. Dis. 208, 50–56 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Murray, J.M. et al. HIV DNA subspecies persist in both activated and resting memory CD4+ T cells during antiretroviral therapy. J. Virol. 88, 3516–3526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Khoury, G. et al. Persistence of integrated HIV DNA in CXCR3+CCR6+memory CD4+ T-cells in HIV-infected individuals on antiretroviral therapy. AIDS (in the press).

  100. van der Sluis, R.M. et al. Dendritic cell type-specific HIV-1 activation in effector T cells: implications for latent HIV-1 reservoir establishment. AIDS 29, 1003–1014 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Tucker, J.D., Rennie, S. & Social and Ethical Working Group on HIV Cure. Social and ethical implications of HIV cure research. AIDS 28, 1247–1250 (2014).

    Article  PubMed  Google Scholar 

  102. Henderson, G.E. The ethics of HIV “cure” research: what can we learn from consent forms? AIDS Res. Hum. Retroviruses 31, 56–63 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Peay, H.L. & Henderson, G.E. What motivates participation in HIV cure trials? A call for real-time assessment to improve informed consent. J. Virus Erad. 1, 51–53 (2015).

    PubMed  PubMed Central  Google Scholar 

  104. Moodley, K., Staunton, C., de Roubaix, M. & Cotton, M. HIV cure research in South Africa: a preliminary exploration of stakeholder perspectives. AIDS Care 28, 524–527 (2016).

    Article  PubMed  Google Scholar 

  105. Chu, C.E. et al. Exploring the social meaning of curing HIV: a qualitative study of people who inject drugs in Guangzhou, China. AIDS Res. Hum. Retroviruses 31, 78–84 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lo, Y.R., Chu, C., Ananworanich, J., Excler, J.L. & Tucker, J.D. Stakeholder engagement in HIV cure research: Lessons learned from other HIV interventions and the way forward. AIDS Patient Care STDS 29, 389–399 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Newman, P.A. & Rubincam, C. Advancing community stakeholder engagement in biomedical HIV prevention trials: principles, practices and evidence. Expert Rev. Vaccines 13, 1553–1562 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Sax, P.E. et al. HIV cure strategies: how good must they be to improve on current antiretroviral therapy? PLoS One 9, e113031 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Freedberg, K.A. et al. The HIV cure research agenda: the role of mathematical modelling and cost-effectiveness analysis. J. Virus Erad. 1, 245–249 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. Amon, J.J. Dangerous medicines: unproven AIDS cures and counterfeit antiretroviral drugs. Global. Health 4, 5 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Yukl, S.A. et al. Challenges in detecting HIV persistence during potentially curative interventions: a study of the Berlin patient. PLoS Pathog. 9, e1003347 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fauci, A.S., Marston, H.D. & Folkers, G.K. An HIV cure: feasibility, discovery, and implementation. J. Am. Med. Assoc. 312, 335–336 (2014).

    Article  CAS  Google Scholar 

  113. Tucker, J.D., Volberding, P.A., Margolis, D.M., Rennie, S. & Barré-Sinoussi, F. Words matter: Discussing research towards an HIV cure in research and clinical contexts. J. Acquir. Immune Defic. Syndr. 67, e110–e111 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Persaud, D. et al. Absence of detectable HIV-1 viremia after treatment cessation in an infant. N. Engl. J. Med. 369, 1828–1835 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Denton, P.W. et al. Generation of HIV latency in humanized BLT mice. J. Virol. 86, 630–634 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Deng, K. et al. Broad CTL response is required to clear latent HIV-1 due to dominance of escape mutations. Nature 517, 381–385 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Archin, N.M. et al. Immediate antiviral therapy appears to restrict resting CD4+ cell HIV-1 infection without accelerating the decay of latent infection. Proc. Natl. Acad. Sci. USA 109, 9523–9528 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Hurst, J. et al. Immunological biomarkers predict HIV-1 viral rebound after treatment interruption. Nat. Commun. 6, 8495 (2015).

    Article  CAS  PubMed  Google Scholar 

  119. Assoumou, L. et al. ANRS 116 SALTO study group. A low HIV-DNA level in peripheral blood mononuclear cells at antiretroviral treatment interruption predicts a higher probability of maintaining viral control. AIDS 29, 2003–2007 (2015).

    Article  CAS  PubMed  Google Scholar 

  120. Katlama, C. et al. EraMune-01 study team. Treatment intensification followed by interleukin-7 reactivates HIV without reducing total HIV DNA: a randomized trial. AIDS 30, 221–230 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Lorenzo-Redondo, R. et al. Persistent HIV-1 replication maintains the tissue reservoir during therapy. Nature 530, 51–56 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wightman, F. et al. Entinostat is a histone deacetylase inhibitor selective for class 1 histone deacetylases and activates HIV production from latently infected primary T cells. AIDS 27, 2853–2862 (2013).

    Article  CAS  PubMed  Google Scholar 

  123. Jiang, G. et al. Reactivation of HIV latency by a newly modified Ingenol derivative via protein kinase Cδ-NF-κB signaling. AIDS 28, 1555–1566 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Boehm, D. et al. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Cell Cycle 12, 452–462 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Rasmussen, T.A. et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial. Lancet HIV 1, e13–e21 (2014).

    Article  PubMed  Google Scholar 

  126. Hansen, S.G. et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 473, 523–527 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

J.L. is supported in part by federal funds from the NCI/NIH under contract no. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the DHHS, nor does mention of trade names, commercial products or organizations imply endorsement by the U.S. government. The views expressed are those of the authors and should not be construed to represent the positions of the U.S. Army, the Department of Defense or the US National Institutes of Health. Y.-R.L. is a World Health Organization (WHO) staff member. The opinions herein are those of the authors and should not be construed as official or representing the views of the WHO. The authors acknowledge T. Rasmussen, T. Mota and M. Crane for assistance with preparation of figures.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Steven G Deeks.

Ethics declarations

Competing interests

S.G.D. has received research funding and support from Gilead Sciences, Merck and ViiV, and consulting fees from Bristol-Myers Squibb, Bionor and InVirVax. J.V.L. is a full-time employee of ViiV Healthcare, a company developing and distributing antiretroviral drugs. J.W.M. is a consultant to Gilead Sciences, has received research funding from Gilead Sciences and Bristol-Myers Squibb and owns shares in Co-Crystal Pharma, Inc. D.M.M. has received research funding from Gilead Sciences, Bristol-Myers Squibb and Qura Therapeutics, consulting fees from Merck Research Laboratories, and owns common stock in Gilead Sciences A.S.-C. reports a grant from MSD, consultancy honoraria from ViiV healthcare, lecture honoraria from MSD, Gilead and Bristol-Myers Squibb. S.R.L.'s institution receives funding for investigator-initiated studies from Merck, Gilead Sciences, Viiv and Tetralogic pharmaceuticals. She has received consulting fees from and is on the advisory board of Bionor and honoraria for educational activities from Viiv and Merck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deeks, S., Lewin, S., Ross, A. et al. International AIDS Society global scientific strategy: towards an HIV cure 2016. Nat Med 22, 839–850 (2016). https://doi.org/10.1038/nm.4108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4108

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing