Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity

Subjects

Abstract

Accumulation of visceral adipose tissue correlates with elevated inflammation and increased risk of metabolic diseases. However, little is known about the molecular mechanisms that control its pathological expansion. Transcription factor interferon regulatory factor 5 (IRF5) has been implicated in polarizing macrophages towards an inflammatory phenotype. Here we demonstrate that mice lacking Irf5, when placed on a high-fat diet, show no difference in the growth of their epididymal white adipose tissue (epiWAT) but they show expansion of their subcutaneous white adipose tissue, as compared to wild-type (WT) mice on the same diet. EpiWAT from Irf5-deficient mice is marked by accumulation of alternatively activated macrophages, higher collagen deposition that restricts adipocyte size, and enhanced insulin sensitivity compared to epiWAT from WT mice. In obese individuals, IRF5 expression is negatively associated with insulin sensitivity and collagen deposition in visceral adipose tissue. Genome-wide analysis of gene expression in adipose tissue macrophages highlights the transforming growth factor β1 (TGFB1) gene itself as a direct target of IRF5-mediated inhibition. This study uncovers a new function for IRF5 in controlling the relative mass of different adipose tissue depots and thus insulin sensitivity in obesity, and it suggests that inhibition of IRF5 may promote a healthy metabolic state during this condition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Irf5 is specifically induced in visceral adipose tissue macrophages during obesity.
Figure 2: Irf5 deficiency promotes intra-abdominal adipose tissue remodeling and type 2 immune responses while enhancing inguinal adiposity.
Figure 3: Myeloid cell–specific Irf5 deletion promotes subcutaneous adiposity and intra-abdominal adipose tissue remodeling.
Figure 4: Irf5 depletion preserves glucose homeostasis in obesity.
Figure 5: IRF5 expression in macrophages is associated with adipose tissue collagen deposition in human obesity.
Figure 6: IRF5 controls transcription of the TGFB1 gene in human adipose-tissue macrophages.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Tchernof, A. & Despres, J.P. Pathophysiology of human visceral obesity: an update. Physiol. Rev. 93, 359–404 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Klöting, N. et al. Insulin-sensitive obesity. Am. J. Physiol. Endocrinol. Metab. 299, E506–E515 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Abate, N., Garg, A., Peshock, R.M., Stray-Gundersen, J. & Grundy, S.M. Relationships of generalized and regional adiposity to insulin sensitivity in men. J. Clin. Invest. 96, 88–98 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lawrence, T. & Natoli, G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750–761 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Odegaard, J.I. & Chawla, A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 339, 172–177 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liao, X. et al. Kruppel-like factor 4 regulates macrophage polarization. J. Clin. Invest. 121, 2736–2749 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Odegaard, J.I. et al. Macrophage-specific PPAR-γ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Graham, R.R. et al. A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat. Genet. 38, 550–555 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Krausgruber, T. et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 12, 231–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Bertola, A. et al. Identification of adipose tissue dendritic cells correlated with obesity-associated insulin-resistance and inducing Th17 responses in mice and patients. Diabetes 61, 2238–2247 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dalmas, E. et al. T cell-derived IL-22 amplifies IL-1β-driven inflammation in human adipose tissue: relevance to obesity and type 2 diabetes. Diabetes 63, 1966–1977 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Fabbrini, E. et al. Association between specific adipose tissue CD4+ T-cell populations and insulin resistance in obese individuals. Gastroenterology 145, 366–374 e1–3 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Bourlier, V. et al. Remodeling phenotype of human subcutaneous adipose tissue macrophages. Circulation 117, 806–815 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, X. et al. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab. 18, 816–830 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, J.Y. et al. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest. 117, 2621–2637 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wander, P.L. et al. Change in visceral adiposity independently predicts a greater risk of developing type 2 diabetes over 10 years in Japanese Americans. Diabetes Care 36, 289–293 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arner, P., Arner, E., Hammarstedt, A. & Smith, U. Genetic predisposition for type 2 diabetes, but not for overweight/obesity, is associated with a restricted adipogenesis. PLoS ONE 6, e18284 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoffstedt, J. et al. Regional impact of adipose tissue morphology on the metabolic profile in morbid obesity. Diabetologia 53, 2496–2503 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Sun, K., Tordjman, J., Clement, K. & Scherer, P.E. Fibrosis and adipose tissue dysfunction. Cell Metab. 18, 470–477 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Henegar, C. et al. Adipose tissue transcriptomic signature highlights the pathological relevance of extracellular matrix in human obesity. Genome Biol. 9, R14 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chun, T.H. et al. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 125, 577–591 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Vila, I.K. et al. Immune cell toll-like receptor 4 mediates the development of obesity- and endotoxemia-associated adipose tissue fibrosis. Cell Rep. 7, 1116–1129 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Khan, T. et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol. Cell. Biol. 29, 1575–1591 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Lee, J.T. et al. Macrophage metalloelastase (MMP12) regulates adipose tissue expansion, insulin sensitivity, and expression of inducible nitric oxide synthase. Endocrinology 155, 3409–3420 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Divoux, A. et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59, 2817–2825 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arner, E. et al. Adipocyte turnover: relevance to human adipose tissue morphology. Diabetes 59, 105–109 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Tordjman, J. et al. Structural and inflammatory heterogeneity in subcutaneous adipose tissue: relation with liver histopathology in morbid obesity. J. Hepatol. 56, 1152–1158 (2012).

    Article  PubMed  Google Scholar 

  28. Halberg, N. et al. Hypoxia-inducible factor 1α induces fibrosis and insulin resistance in white adipose tissue. Mol. Cell. Biol. 29, 4467–4483 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wernstedt Asterholm, I. et al. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab. 20, 103–118 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Wynn, T.A. & Barron, L. Macrophages: master regulators of inflammation and fibrosis. Semin. Liver Dis. 30, 245–257 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song, E. et al. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell. Immunol. 204, 19–28 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Keophiphath, M. et al. Macrophage-secreted factors promote a profibrotic phenotype in human preadipocytes. Mol. Endocrinol. 23, 11–24 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lazear, H.M. et al. IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream of MAVS signaling. PLoS Pathog. 9, e1003118 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Takaoka, A. et al. Integral role of IRF-5 in the gene induction programme activated by toll-like receptors. Nature 434, 243–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Spencer, M. et al. Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance. J. Clin. Endocrinol. Metab. 96, E1990–E1998 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seki, E. et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med. 13, 1324–1332 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Petruschke, T., Rohrig, K. & Hauner, H. Transforming growth factor beta (TGF-beta) inhibits the differentiation of human adipocyte precursor cells in primary culture. Int. J. Obes. Relat. Metab. Disord. 18, 532–536 (1994).

    CAS  PubMed  Google Scholar 

  39. Ignotz, R.A. & Massague, J. Type beta transforming growth factor controls the adipogenic differentiation of 3T3 fibroblasts. Proc. Natl. Acad. Sci. USA 82, 8530–8534 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Klimčáková, E. et al. Worsening of obesity and metabolic status yields similar molecular adaptations in human subcutaneous and visceral adipose tissue: decreased metabolism and increased immune response. J. Clin. Endocrinol. Metab. 96, E73–E82 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Klimcáková, E. et al. Macrophage gene expression is related to obesity and the metabolic syndrome in human subcutaneous fat as well as in visceral fat. Diabetologia 54, 876–887 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Krausgruber, T. et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat. Immunol. 12, 231–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  43. Joly-Amado, A. et al. Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning. EMBO J. 31, 4276–4288 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berglund, E.D. et al. Glucose metabolism in vivo in four commonly used inbred mouse strains. Diabetes 57, 1790–1799 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hajduch, E., Darakhshan, F. & Hundal, H.S. Fructose uptake in rat adipocytes: GLUT5 expression and the effects of streptozotocin-induced diabetes. Diabetologia 41, 821–828 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Kammoun, H.L. et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J. Clin. Invest. 119, 1201–1215 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Divoux, A. et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 59, 2817–2825 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rouault, C. et al. Roles of chemokine ligand-2 (CXCL2) and neutrophils in influencing endothelial cell function and inflammation of human adipose tissue. Endocrinology 154, 1069–1079 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Prieur, X. et al. Differential lipid partitioning between adipocytes and tissue macrophages modulates macrophage lipotoxicity and M2/M1 polarization in obese mice. Diabetes 60, 797–809 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Toubal, A. et al. SMRT-GPS2 corepressor pathway dysregulation coincides with obesity-linked adipocyte inflammation. J. Clin. Invest. 123, 362–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Storey, J.D. in International Encyclopedia of Statistical Science 1st edn, (ed. Lovric, M.) False Discovery Rate (Springer, 2011).

  52. Prifti, E., Zucker, J.D., Clement, K. & Henegar, C. FunNet: an integrative tool for exploring transcriptional interactions. Bioinformatics 24, 2636–2638 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Arch, J.R., Hislop, D., Wang, S.J. & Speakman, J.R. Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals. Int. J. Obes. (Lond) 30, 1322–1331 (2006).

    Article  CAS  Google Scholar 

  54. Even, P.C., Mokhtarian, A. & Pele, A. Practical aspects of indirect calorimetry in laboratory animals. Neurosci. Biobehav. Rev. 18, 435–447 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Weir, J.B. New methods for calculating metabolic rate with special reference to protein metabolism. 1949. Nutrition 6, 213–221 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Enond and H. Foher-Ting. We thank Assistance Publique des Hôpitaux de Paris, Programs of Clinical Investigation (Contrat de Recherche Clinique Fibrota AOO759-32 PI to J.A.-W. and Programme Hospitalier de Recherche Clinique 0702 PI to K.C.), the French National Agency of Research (CONRAD to N. Venteclef, ADIPOFIB to K.C. and OBELIP to D.L.), a fellowship from Region Ile de France (to F.A., N. Venteclef and K.C.), Midi-Pyrénées (to D.L.), and the French Foundation for Medical Research (Equipe FRM DEQ20140329504 to F.F. and N. Venteclef and Equipe FRM DEQ20120323701 to K.C.). This work has benefited from a French Government grant managed by the National Agency for Research ('Investments for the Future' program, reference no. ANR-10-IAHU (to K.C. and F.F.) and from the Kennedy Institute Trustees' Research Fund (to K.B., H.L.E. and I.A.U.). Metabolic analyses in vivo were performed on the Functional & Physiological Exploration Platform (FPE) technical platform, unit 'Biologie Fonctionnelle et Adaptative,' (Univ. Paris Diderot, Sorbonne Paris Cité, Paris, France), and on the ICAN PRECLINIC platform (Institute of Cardiometabolism and Nutrition, Pitie-Salpêtrière Hospital, Paris, France). D.L. is a member of Institut Universitaire de France. A. Toubal is a recipient of a doctoral fellowship from the Ministère de la Recherche et de l'Enseignement Supérieur.

Author information

Authors and Affiliations

Authors

Contributions

E.D., I.A.U. and N. Venteclef conceived the study and wrote the manuscript. E.D. performed part of the in vivo studies (human and mouse) and analyzed data. A. Toubal and F.A. performed the in vivo studies and data analyses, and assisted in the preparation of the manuscript. K.B., H.L.E., M.P., I.H., Y.L. and P.A. assisted with the mouse studies. S.A. and K.L. assisted with flow cytometry analyses. A.L., R.G.P.D. and C.C.-G. performed the metabolic analyses in vivo. E.M., N. Viguerie, C.P., V.S., A. Torcivia, J.A.-W., D.L. and K.C. contributed to the human data collection, data analyses and interpretation. O.A. and K.C. performed statistical analyses in population 1. F.F., S.L., J.A.-W., D.L. and K.C. interpreted and assisted in the writing of the manuscript. I.A.U. and N. Venteclef designed, analyzed and interpreted the studies.

Corresponding authors

Correspondence to Irina A Udalova or Nicolas Venteclef.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 1582 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalmas, E., Toubal, A., Alzaid, F. et al. Irf5 deficiency in macrophages promotes beneficial adipose tissue expansion and insulin sensitivity during obesity. Nat Med 21, 610–618 (2015). https://doi.org/10.1038/nm.3829

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3829

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing