Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of JAK-STAT signaling stimulates adult satellite cell function

A Corrigendum to this article was published on 07 April 2015

A Corrigendum to this article was published on 08 October 2014

This article has been updated

Abstract

Diminished regenerative capacity of skeletal muscle occurs during adulthood. We identified a reduction in the intrinsic capacity of mouse adult satellite cells to contribute to muscle regeneration and repopulation of the niche. Gene expression analysis identified higher expression of JAK-STAT signaling targets in 18-month-old relative to 3-week-old mice. Knockdown of Jak2 or Stat3 significantly stimulated symmetric satellite stem cell divisions on cultured myofibers. Genetic knockdown of Jak2 or Stat3 expression in prospectively isolated satellite cells markedly enhanced their ability to repopulate the satellite cell niche after transplantation into regenerating tibialis anterior muscle. Pharmacological inhibition of Jak2 and Stat3 activity similarly stimulated symmetric expansion of satellite cells in vitro and their engraftment in vivo. Intramuscular injection of these drugs resulted in a marked enhancement of muscle repair and force generation after cardiotoxin injury. Together these results reveal age-related intrinsic properties that functionally distinguish satellite cells and suggest a promising therapeutic avenue for the treatment of muscle-wasting diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Increasing age negatively affects the engraftment capacity of satellite cells.
Figure 2: The transcriptional profile of adult satellite cells is enriched for JAK-STAT signaling pathway members and interactors.
Figure 3: Inhibition of JAK-STAT signaling rescues the proliferation defect of satellite cells from the muscle of older adult mice.
Figure 4: Knockdown of JAK-STAT pathway members ameliorates the engraftment potential of adult satellite cells.
Figure 5: Administration of small-molecule JAK-STAT inhibitors ex vivo before transplantation into young adult mice enhances engraftment.
Figure 6: Direct injection of JAK-STAT inhibitors in vivo improves muscle regeneration, increases satellite cell number and functionally improves skeletal muscle.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Change history

  • 22 September 2014

     In the version of this article initially published online, the third sentence of the Abstract read “Gene expression analysis identified higher expression of JAK-STAT signaling targets in 3-week-old relative to 18-month-old mice,” when it should have read “Gene expression analysis identified higher expression of JAK-STAT signaling targets in 18-month-old relative to 3-week-old mice.” The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Mauro, A. Satellite cell of skeletal muscle fibers. J. Biophys. Biochem. Cytol. 9, 493–495 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schultz, E., Gibson, M.C. & Champion, T. Satellite cells are mitotically quiescent in mature mouse muscle: an EM and radioautographic study. J. Exp. Zool. 206, 451–456 (1978).

    Article  CAS  PubMed  Google Scholar 

  3. Montarras, D. et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science 309, 2064–2067 (2005).

    CAS  PubMed  Google Scholar 

  4. Collins, C.A. et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289–301 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Kuang, S., Kuroda, K., Le Grand, F. & Rudnicki, M.A. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129, 999–1010 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zammit, P.S. et al. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J. Cell Biol. 166, 347–357 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carlson, M.E. & Conboy, I.M. Loss of stem cell regenerative capacity within aged niches. Aging Cell 6, 371–382 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Augustin, H. & Partridge, L. Invertebrate models of age-related muscle degeneration. Biochim. Biophys. Acta 1790, 1084–1094 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Grounds, M.D. Age-associated changes in the response of skeletal muscle cells to exercise and regeneration. Ann. NY Acad. Sci. 854, 78–91 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Allbrook, D.B., Han, M.F. & Hellmuth, A.E. Population of muscle satellite cells in relation to age and mitotic activity. Pathology 3, 223–243 (1971).

    Article  CAS  PubMed  Google Scholar 

  11. Shefer, G., Van de Mark, D.P., Richardson, J.B. & Yablonka-Reuveni, Z. Satellite-cell pool size does matter: defining the myogenic potency of aging skeletal muscle. Dev. Biol. 294, 50–66 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Conboy, I.M. & Rando, T.A. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev. Cell 3, 397–409 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Carlson, M.E., Hsu, M. & Conboy, I.M. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454, 528–532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Conboy, I.M., Conboy, M.J., Smythe, G.M. & Rando, T.A. Notch-mediated restoration of regenerative potential to aged muscle. Science 302, 1575–1577 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Brack, A.S. et al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317, 807–810 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Brack, A.S. & Rando, T.A. Intrinsic changes and extrinsic influences of myogenic stem cell function during aging. Stem Cell Rev. 3, 226–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Sousa-Victor, P. et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 506, 316–321 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Cosgrove, B.D. et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles. Nat. Med. 20, 255–264 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bernet, J.D. et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice. Nat. Med. 20, 265–271 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bentzinger, C.F. & Rudnicki, M.A. Rejuvenating aged muscle stem cells. Nat. Med. 20, 234–235 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Yablonka-Reuveni, Z., Seger, R. & Rivera, A.J. Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J. Histochem. Cytochem. 47, 23–42 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Neal, A., Boldrin, L. & Morgan, J.E. The satellite cell in male and female, developing and adult mouse muscle: distinct stem cells for growth and regeneration. PLoS ONE 7, e37950 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bosnakovski, D. et al. Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells 26, 3194–3204 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Conboy, I.M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Toth, K.G. et al. IL-6 induced STAT3 signalling is associated with the proliferation of human muscle satellite cells following acute muscle damage. PLoS ONE 6, e17392 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Troy, A. et al. Coordination of satellite cell activation and self-renewal by Par-complex–dependent asymmetric activation of p38α/β MAPK. Cell Stem Cell 11, 541–553 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pasut, A., Jones, A.E. & Rudnicki, M.A. Isolation and culture of individual myofibers and their satellite cells from adult skeletal muscle. J. Vis. Exp. e50074 (2013).

  29. Cooper, R.N. et al. In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J. Cell Sci. 112, 2895–2901 (1999).

    CAS  PubMed  Google Scholar 

  30. Uehara, Y., Mochizuki, M., Matsuno, K., Haino, T. & Asai, A. Novel high-throughput screening system for identifying STAT3–SH2 antagonists. Biochem. Biophys. Res. Commun. 380, 627–631 (2009).

    Article  CAS  PubMed  Google Scholar 

  31. Eriksen, K.W. et al. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia 15, 787–793 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Launay, T., Noirez, P., Butler-Browne, G. & Agbulut, O. Expression of slow myosin heavy chain during muscle regeneration is not always dependent on muscle innervation and calcineurin phosphatase activity. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1508–R1514 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Shuai, K. & Liu, B. Regulation of JAK-STAT signalling in the immune system. Nat. Rev. Immunol. 3, 900–911 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Megeney, L.A., Perry, R.L., LeCouter, J.E. & Rudnicki, M.A. bFGF and LIF signaling activates STAT3 in proliferating myoblasts. Dev. Genet. 19, 139–145 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Yang, Y. et al. STAT3 induces muscle stem cell differentiation by interaction with myoD. Cytokine 46, 137–141 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. McKay, B.R. et al. Elevated SOCS3 and altered IL-6 signaling is associated with age-related human muscle stem cell dysfunction. Am. J. Physiol. Cell Physiol. 304, C717–C728 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chakkalakal, J.V., Jones, K.M., Basson, M.A. & Brack, A.S. The aged niche disrupts muscle stem cell quiescence. Nature 490, 355–360 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jang, Y.C., Sinha, M., Cerletti, M., Dall'Osso, C. & Wagers, A.J. Skeletal muscle stem cells: effects of aging and metabolism on muscle regenerative function. Cold Spring Harb. Symp. Quant. Biol. 76, 101–111 (2011).

    Article  CAS  PubMed  Google Scholar 

  39. Harrison, D.A. The Jak/STAT pathway. Cold Spring Harb. Perspect. Biol. 4, a011205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Le Grand, F., Jones, A.E., Seale, V., Scime, A. & Rudnicki, M.A. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell 4, 535–547 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. von Maltzahn, J., Bentzinger, C.F. & Rudnicki, M.A. Wnt7a-Fzd7 signalling directly activates the Akt/mTOR anabolic growth pathway in skeletal muscle. Nat. Cell Biol. 14, 186–191 (2012).

    Article  CAS  Google Scholar 

  42. Bentzinger, C.F. et al. Fibronectin regulates Wnt7a signaling and satellite cell expansion. Cell Stem Cell 12, 75–87 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tepass, U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu. Rev. Cell Dev. Biol. 28, 655–685 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. McCaffrey, L.M., Montalbano, J., Mihai, C. & Macara, I.G. Loss of the Par3 polarity protein promotes breast tumorigenesis and metastasis. Cancer Cell 22, 601–614 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Price, F.D. et al. Canonical Wnt signaling induces a primitive endoderm metastable state in mouse embryonic stem cells. Stem Cells 31, 752–764 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Briguet, A., Courdier-Fruh, I., Foster, M., Meier, T. & Magyar, J.P. Histological parameters for the quantitative assessment of muscular dystrophy in the mdx-mouse. Neuromuscul. Disord. 14, 675–682 (2004).

    Article  PubMed  Google Scholar 

  47. Huang, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  CAS  Google Scholar 

  48. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  49. Mootha, V.K. et al. PGC-1α–responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Oleynik for conducting cell sorting and providing guidance regarding FACS isolation and analysis. We thank J. Ritchie for mouse husbandry, A. Grayston for his help with myofibers counts and G. Palidwor for RMA normalization of microarray data sets and constructive discussions. We thank V. Soleimani for constructive discussions and access to unpublished microarray data. We thank M. Kyba, University of Minnesota, for the Pax7-ZsGreen mice. F.D.P. was supported by the Canadian Stem Cell Network and a Doctoral Research Award from the Canadian Institutes of Health Research. J.v.M. was supported by a grant from the German Research Foundation (MA-3975/2-1). C.F.B. was supported by the Swiss National Science Foundation. M.A.R. holds the Canada Research Chair in Molecular Genetics. These studies were carried out with support of grants to M.A.R. from the US National Institutes of Health (R01AR044031), the Canadian Institutes for Health Research (MOP-81288), the Stem Cell Network and the Ontario Ministry of Economic Development and Innovation.

Author information

Authors and Affiliations

Authors

Contributions

F.D.P. designed and carried out experiments, analyzed results and wrote the manuscript. J.v.M. designed and conducted experiments and analyzed results. C.F.B., N.A.D., H.Y. and N.C.C. conducted experiments and analyzed and interpreted data. D.H.W. conducted experiments. J.F. provided expertise in physiological analysis. M.A.R. designed experiments, analyzed results, wrote the manuscript and provided financial support.

Corresponding author

Correspondence to Michael A Rudnicki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Table 1 (PDF 1639 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Price, F., von Maltzahn, J., Bentzinger, C. et al. Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat Med 20, 1174–1181 (2014). https://doi.org/10.1038/nm.3655

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3655

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing