Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q– syndrome

Abstract

The identification of the genes associated with chromosomal translocation breakpoints has fundamentally changed understanding of the molecular basis of hematological malignancies. By contrast, the study of chromosomal deletions has been hampered by the large number of genes deleted and the complexity of their analysis. We report the generation of a mouse model for human 5q– syndrome using large-scale chromosomal engineering. Haploinsufficiency of the Cd74–Nid67 interval (containing Rps14, encoding the ribosomal protein S14) caused macrocytic anemia, prominent erythroid dysplasia and monolobulated megakaryocytes in the bone marrow. These effects were associated with defective bone marrow progenitor development, the appearance of bone marrow cells expressing high amounts of the tumor suppressor p53 and increased bone marrow cell apoptosis. Notably, intercrossing with p53-deficient mice completely rescued the progenitor cell defect, restoring common myeloid progenitor and megakaryocytic-erythroid progenitor, granulocyte-monocyte progenitor and hematopoietic stem cell bone marrow populations. This mouse model suggests that a p53-dependent mechanism underlies the pathophysiology of the 5q– syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the CDR in human 5q– syndrome and its alignment with mouse regions of synteny.
Figure 2: Deletion of the Cd74–Nid67 interval leads to macrocytic anemia.
Figure 3: Blood and bone marrow cell proportions in Cd74–Nid67-deleted mice.
Figure 4: Dysplastic bone marrow from Cd74–Nid67-deleted mice.
Figure 5: Characterization of hematopoietic progenitor cells, p53 expression and apoptotic cells in the bone marrow of Cd74–Nid67-deleted mice.
Figure 6: Deletion of Trp53 reverses the progenitor cell deficits resulting from deletion of the Cd74–Nid67 interval.

Similar content being viewed by others

References

  1. Van den Berghe, H. et al. Distinct hematological disorder with deletion of long arm of no. 5 chromosome. Nature 251, 437–438 (1974).

    Article  CAS  Google Scholar 

  2. Giagounidis, A.A., Germing, U., Wainscoat, J.S., Boultwood, J. & Aul, C. The 5q– syndrome. Hematology 9, 271–277 (2004).

    Article  CAS  Google Scholar 

  3. List, A. et al. Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N. Engl. J. Med. 355, 1456–1465 (2006).

    Article  CAS  Google Scholar 

  4. Vardiman, J.W., Harris, N.L. & Brunning, R.D. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 100, 2292–2302 (2002).

    Article  CAS  Google Scholar 

  5. Boultwood, J., Lewis, S. & Wainscoat, J.S. The 5q– syndrome. Blood 84, 3253–3260 (1994).

    CAS  PubMed  Google Scholar 

  6. Le Beau, M.M. et al. Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases. Proc. Natl. Acad. Sci. USA 90, 5484–5488 (1993).

    Article  CAS  Google Scholar 

  7. Boultwood, J. et al. Molecular mapping of uncharacteristically small 5q deletions in two patients with the 5q– syndrome: delineation of the critical region on 5q and identification of a 5q– breakpoint. Genomics 19, 425–432 (1994).

    Article  CAS  Google Scholar 

  8. Boultwood, J. et al. Narrowing and genomic annotation of the commonly deleted region of the 5q– syndrome. Blood 99, 4638–4641 (2002).

    Article  CAS  Google Scholar 

  9. Lai, F. et al. Transcript map and comparative analysis of the 1.5-Mb commonly deleted segment of human 5q31 in malignant myeloid diseases with a del(5q). Genomics 71, 235–245 (2001).

    Article  CAS  Google Scholar 

  10. Boultwood, J. et al. Gene expression profiling of CD34+ cells in patients with the 5q– syndrome. Br. J. Haematol. 139, 578–589 (2007).

    Article  CAS  Google Scholar 

  11. Soengas, M.S. et al. Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211 (2001).

    Article  CAS  Google Scholar 

  12. Teitz, T. et al. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat. Med. 6, 529–535 (2000).

    Article  CAS  Google Scholar 

  13. Brekken, R.A. & Sage, E.H. SPARC, a matricellular protein: at the crossroads of cell-matrix. Matrix Biol. 19, 569–580 (2000).

    Article  CAS  Google Scholar 

  14. Lehmann, S. et al. Common deleted genes in the 5q– syndrome: thrombocytopenia and reduced erythroid colony formation in SPARC null mice. Leukemia 21, 1931–1936 (2007).

    Article  CAS  Google Scholar 

  15. Ebert, B.L. et al. Identification of RPS14 as a 5q– syndrome gene by RNA interference screen. Nature 451, 335–339 (2008).

    Article  CAS  Google Scholar 

  16. Draptchinskaia, N. et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anemia. Nat. Genet. 21, 169–175 (1999).

    Article  CAS  Google Scholar 

  17. Bagchi, A. et al. CHD5 is a tumor suppressor at human 1p36. Cell 128, 459–475 (2007).

    Article  CAS  Google Scholar 

  18. Zhu, Y. et al. Genomic interval engineering of mice identifies a novel modulator of triglyceride production. Proc. Natl. Acad. Sci. USA 97, 1137–1142 (2000).

    Article  CAS  Google Scholar 

  19. LePage, D.F., Church, D.M., Millie, E., Hassold, T.J. & Conlon, R.A. Rapid generation of nested chromosomal deletions on mouse chromosome 2. Proc. Natl. Acad. Sci. USA 97, 10471–10476 (2000).

    Article  CAS  Google Scholar 

  20. Dixon, J., Brakebusch, C., Fassler, R. & Dixon, M.J. Increased levels of apoptosis in the prefusion neural folds underlie the craniofacial disorder, Treacher Collins syndrome. Hum. Mol. Genet. 9, 1473–1480 (2000).

    Article  CAS  Google Scholar 

  21. Forster, A. et al. Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer. Cancer Cell 3, 449–458 (2003).

    Article  CAS  Google Scholar 

  22. Grobe, K. et al. Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate Ndst1 gene function. Development 132, 3777–3786 (2005).

    Article  CAS  Google Scholar 

  23. Bikoff, E.K. et al. Defective major histocompatibility complex class II assembly, transport, peptide acquisition and CD4+ T cell selection in mice lacking invariant chain expression. J. Exp. Med. 177, 1699–1712 (1993).

    Article  CAS  Google Scholar 

  24. Jones, N.C. et al. Prevention of the neurocristopathy Treacher Collins syndrome through inhibition of p53 function. Nat. Med. 14, 125–133 (2008).

    Article  CAS  Google Scholar 

  25. McGowan, K.A. et al. Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat. Genet. 40, 963–970 (2008).

    Article  CAS  Google Scholar 

  26. Panić, L. et al. Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Mol. Cell. Biol. 26, 8880–8891 (2006).

    Article  Google Scholar 

  27. Warner, J.R. & McIntosh, K.B. How common are extraribosomal functions of ribosomal proteins? Mol. Cell 34, 3–11 (2009).

    Article  CAS  Google Scholar 

  28. Danilova, N., Sakamoto, K.M. & Lin, S. p53 family in development. Mech. Dev. 125, 919–931 (2008).

    Article  CAS  Google Scholar 

  29. Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  Google Scholar 

  30. Loonstra, A. et al. Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc. Natl. Acad. Sci. USA 98, 9209–9214 (2001).

    Article  CAS  Google Scholar 

  31. Pellagatti, A. et al. Haploinsufficiency of RPS14 in 5q– syndrome is associated with deregulation of ribosomal- and translation-related genes. Br. J. Haematol. 142, 57–64 (2008).

    Article  CAS  Google Scholar 

  32. Ferreira-Cerca, S., Poll, G., Gleizes, P.E., Tschochner, H. & Milkereit, P. Roles of eukaryotic ribosomal proteins in maturation and transport of pre-18S rRNA and ribosome function. Mol. Cell 20, 263–275 (2005).

    Article  CAS  Google Scholar 

  33. Jakovljevic, J. et al. The carboxy-terminal extension of yeast ribosomal protein S14 is necessary for maturation of 43S preribosomes. Mol. Cell 14, 331–342 (2004).

    Article  CAS  Google Scholar 

  34. Dokal, I. & Vulliamy, T. Inherited aplastic anemias/bone marrow failure syndromes. Blood Rev. 22, 141–153 (2008).

    Article  CAS  Google Scholar 

  35. Gazda, H.T. et al. Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. Am. J. Hum. Genet. 79, 1110–1118 (2006).

    Article  CAS  Google Scholar 

  36. Janov, A.J., Leong, T., Nathan, D.G. & Guinan, E.C. Diamond-Blackfan anemia. Natural history and sequelae of treatment. Medicine (Baltimore) 75, 77–78 (1996).

    Article  CAS  Google Scholar 

  37. Menne, T.F. et al. The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nat. Genet. 39, 486–495 (2007).

    Article  CAS  Google Scholar 

  38. Sulic, S. et al. Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response. Genes Dev. 19, 3070–3082 (2005).

    Article  CAS  Google Scholar 

  39. Danilova, N., Sakamoto, K.M. & Lin, S. Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood 112, 5228–5237 (2008).

    Article  CAS  Google Scholar 

  40. Valdez, B.C., Henning, D., So, R.B., Dixon, J. & Dixon, M.J. The Treacher Collins syndrome (TCOF1) gene product is involved in ribosomal DNA gene transcription by interacting with upstream binding factor. Proc. Natl. Acad. Sci. USA 101, 10709–10714 (2004).

    Article  CAS  Google Scholar 

  41. Gonzales, B. et al. The Treacher Collins syndrome (TCOF1) gene product is involved in pre-rRNA methylation. Hum. Mol. Genet. 14, 2035–2043 (2005).

    Article  CAS  Google Scholar 

  42. Dixon, J. et al. Tcof1/Treacle is required for neural crest cell formation and proliferation deficiencies that cause craniofacial abnormalities. Proc. Natl. Acad. Sci. USA 103, 13403–13408 (2006).

    Article  CAS  Google Scholar 

  43. Fumagalli, S. et al. Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation–dependent mechanism of p53 induction. Nat. Cell Biol. 11, 501–508 (2009).

    Article  CAS  Google Scholar 

  44. Patel, S.R. et al. Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes. Blood 106, 4076–4085 (2005).

    Article  CAS  Google Scholar 

  45. Montaville, P. et al. Nuclear translocation of the calcium-binding protein ALG-2 induced by the RNA-binding protein RBM22. Biochim. Biophys. Acta 1763, 1335–1343 (2006).

    Article  CAS  Google Scholar 

  46. Venables, J.P. Aberrant and alternative splicing in cancer. Cancer Res. 64, 7647–7654 (2004).

    Article  CAS  Google Scholar 

  47. Deller, T. et al. Synaptopodin-deficient mice lack a spine apparatus and show deficits in synaptic plasticity. Proc. Natl. Acad. Sci. USA 100, 10494–10499 (2003).

    Article  CAS  Google Scholar 

  48. Vician, L., Silver, A.L., Farias-Eisner, R. & Herschman, H.R. NID67, a small putative membrane protein, is preferentially induced by NGF in PC12 pheochromocytoma cells. J. Neurosci. Res. 64, 108–120 (2001).

    Article  CAS  Google Scholar 

  49. Donehower, L.A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215–221 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks go to members of the McKenzie lab for their comments on the manuscript. We are grateful to the Laboratory of Molecular Biology animal facility staff, especially V. Smith. We are also grateful to K. Grobe (University of Munster) for providing blood from the Ndst1+/− mice and T. Rabbitts (Leeds Institute of Molecular Medicine) for providing Lmo2Cre mice. A.N.J.M., D.R.H., S.L.-A., A.L.L., J.S.W., J.B. and A.J.W. were funded by Leukaemia Research UK.

Author information

Authors and Affiliations

Authors

Contributions

A.N.J.M. conceived of and designed the project; A.N.J.M., D.R.H., L.R.H., A.L.L., L.F.D., R.P. and H.E.J. designed and generated gene-targeted mice; A.N.J.M., J.L.B., L.F.D., S.L.-A., A.L.L., A.J.M., J.B., S.H.W., J.S.W. and A.J.W. analyzed hematopoiesis; J.S.W. and J.B. performed gene expression profiling analysis and provided unpublished information; H.E.J. performed annexin V analysis. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Andrew N J McKenzie.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Methods (PDF 4405 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barlow, J., Drynan, L., Hewett, D. et al. A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q– syndrome. Nat Med 16, 59–66 (2010). https://doi.org/10.1038/nm.2063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing