Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology

Abstract

We show here that mouse interferon-α (IFN-α)–producing cells (mIPCs) are a unique subset of immature antigen-presenting cells (APCs) that secrete IFN-α upon stimulation with viruses. mIPCs have a plasmacytoid morphology, can be stained with an antibody to Ly6G and Ly6C (anti-Ly6G/C) and are Ly6C+B220+CD11cloCD4+; unlike other dendritic cell subsets, however, they do not express CD8α or CD11b. Although mIPCs undergo apoptosis in vitro, stimulation with viruses, IFN-α or CpG oligonucleotides enhanced their survival and T cell stimulatory activity. In vivo, mIPCs were the main producers of IFN-α in cytomegalovirus-infected mice, as depletion of Ly6G+/C+ cells abrogated IFN-α production. mIPCs produced interleukin 12 (IL-12) in response to viruses and CpG oligodeoxynucleotides, but not bacterial products. Although different pathogens can selectively engage various APC subsets for IL-12 production, IFN-α production is restricted to mIPCs' response to viral infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isolation of mIPCs from spleen cells.
Figure 2: Surface phenotype of freshly sorted Ly6G/C+CD11c+Lin spleen mIPCs.
Figure 3: Morphology of freshly sorted Ly6G/C+CD11c+Lin cells.
Figure 4: Viability of spleen and bone marrow Ly6G/C+CD11c+Lin mIPCs after 24-h culture.
Figure 5: Surface phenotype of cultured mIPCs.
Figure 6: T cell stimulatory capacity of mIPCs.
Figure 7: Ly6G/C+CD11c+Lin spleen cells produce both IFN-α and IL-12.
Figure 8: In vivo depletion of Ly6G/C cells abrogates IFN-α production.

Similar content being viewed by others

References

  1. Steinman, R. M. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Siegal, F. P. et al. The nature of the principal type 1 IFN-producing cells in human blood. Science 284, 1835–1837 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Med. 5, 919–923 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Kadowaki, N., Antonenko, S. & Liu, Y. J. Distinct CpG DNA and polyinosinic-polycytidylic acid double-stranded RNA, respectively, stimulate CD11c(−) type 2 dendritic cell precursors and CD11c(+) dendritic cells to produce type I IFN. J. Immunol. 166, 2291–2295 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Pfeffer, L. M. et al. Biological properties of recombinant α-interferons: 40th anniversary of the discovery of interferons. Cancer Res. 58, 2489–2499 (1998).

    CAS  PubMed  Google Scholar 

  6. van den Broek, M., Muller, U., Huang, S., Zinkernagel, R. & Auget, M. Immune defence in mice lacking type I and/or type II interferon receptors. Immunol. Rev. 148, 5–18 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Bandyopadhyay, S., Perussia, B., Trinchieri, G., Miller, D. S. & Starr, S. E. Requirement for HLA-DR+ accessory cells in natural killing of cytomegalovirus-infected fibroblasts. J. Exp. Med. 164, 180–195 (1986).

    Article  CAS  PubMed  Google Scholar 

  8. Chehimi, J. et al. Dendritic cells and IFN-α-producing cells are two functionally distinct non-B, non-monocytic HLA-DR+ cell subsets in human peripheral blood. Immunology 68, 488–490 (1989).

    PubMed Central  Google Scholar 

  9. Perussia, B., Fanning, V. & Trinchieri, G. A leukocyte subset bearing HLA-DR antigens is responsible for in vitro α interferon production in response to viruses. Natural Immunol. Cell Growth Regul. 4, 120–137 (1985).

    CAS  Google Scholar 

  10. Fitzgerald-Bocarsly, P. Human natural interferon-α producing cells. Pharmacol. Ther. 60, 39–62 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Starr, S. E. et al. Morphological and functional differences between HLA-DR+ peripheral blood dendritic cells and HLA-DR+ IFN-α producing cells. Adv. Exp. Med. Biol. 329, 173–178 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Cella, M., Facchetti, F., Lanzavecchia, A. & Colonna, M. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nature Immunol. 1, 305–310 (2000).

    Article  CAS  Google Scholar 

  13. Kadowaki, N., Antonenko, S., Lau, J. Y. & Liu, Y. J. Natural interferon α/β-producing cells link innate and adaptive immunity. J. Exp. Med. 192, 219–226 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rissoan, M. C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Grouard, G. et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185, 1101–1111 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vremec, D. et al. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J. Exp. Med. 176, 47–58 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Pulendran, B. et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl Acad. Sci. USA 96, 1036–1041 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maldonado-Lopez, R. et al. CD8α+ and CD8α- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189, 587–592 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eloranta, M. L., Sandberg, K., Ricciardi-Castagnoli, P., Lindahl, M. & Alm, G. V. Production of interferon-α/β by murine dendritic cell lines stimulated by virus and bacteria. Scand J. Immunol. 46, 235–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Eloranta, M. L. & Alm, G. V. Splenic marginal metallophilic macrophages and marginal zone macrophages are the major interferon-α/β producers in mice upon intravenous challenge with herpes simplex virus. Scand J. Immunol. 49, 391–394 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Hestdal, K. et al. Characterization and regulation of RB6-8C5 antigen expression on murine bone marrow cells. J. Immunol. 147, 22–28 (1991).

    CAS  PubMed  Google Scholar 

  22. Fleming, T. J., Fleming, M. L. & Malek, T. R. Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte–differentiation antigen (Gr-1) detects members of the Ly-6 family. J. Immunol. 151, 2399–2408 (1993).

    CAS  PubMed  Google Scholar 

  23. Jutila, M. A. et al. Ly-6C is a monocyte/macrophage and endothelial cell differentiation antigen regulated by interferon-γ. Eur. J. Immunol. 18, 1819–1826 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Takahama, Y., Sharrow, S. O. & Singer, A. Expression of an unusual T cell receptor (TCR)-V β repertoire by Ly-6C+ subpopulations of CD4+ and/or CD8+ thymocytes. Evidence for a developmental relationship between Ly-6C+ thymocytes and CD4CD8TCR-α/β+ thymocytes. J. Immunol. 147, 2883–2891 (1991).

    CAS  PubMed  Google Scholar 

  25. Sato, N. et al. Functional characterization of NK1.1+ Ly-6C+ cells. Immunol. Lett. 54, 5–9 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Rolink, A. et al. A subpopulation of B220+ cells in murine bone marrow does not express CD19 and contains natural killer cell progenitors. J. Exp. Med. 183, 187–194 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Laouar, Y. & Ezine, S. In vivo CD4+ lymph node T cells from lpr mice generate CD4-CD8-B220+TCR-βlow cells. J. Immunol. 153, 3948–3955 (1994).

    CAS  PubMed  Google Scholar 

  28. Hochrein, H. et al. Differential production of IL-12, IFN-α, and IFN-γ by mouse dendritic cell subsets. J. Immunol. 166, 5448–5455 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Dalod, M. et al. IFN-α/β and IL-12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. (submitted, 2001).

  30. Kadowaki, N. et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J. Exp. Med. 194, 863–870 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Murphy, K. M., Heimberger, A. B. & Loh, D. Y. Induction by antigen of interthymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250, 1720 (1990).

    Article  CAS  PubMed  Google Scholar 

  32. Farber, D. L. T cell memory: heterogeneity and mechanisms. Clin. Immunol. 95, 173–181 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Caux for critical reading and C. Alexandre, D. Lepot and M. Vatan for editorial assistance. Supported by NIH grant CA41268 (to C. B.) and the Cancer Research Institute (to M. D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Trinchieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asselin-Paturel, C., Boonstra, A., Dalod, M. et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2, 1144–1150 (2001). https://doi.org/10.1038/ni736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing