Abstract
The transcription factor Pax5 is essential for commitment of lymphoid progenitors to the B lymphocyte lineage. Pax5 fulfils a dual role by repressing B lineage 'inappropriate' genes and simultaneously activating B lineage–specific genes. This transcriptional reprogramming restricts the broad signaling capacity of uncommitted progenitors to the B cell pathway, regulates cell adhesion and migration, induces VH-DJH recombination, facilitates (pre-)B cell receptor signaling and promotes development to the mature B cell stage. Conditional Pax5 inactivation in early and late B lymphocytes revealed an essential role for Pax5 in controlling the identity and function of B cells throughout B lymphopoiesis. PAX5 has also been implicated in human B cell malignancies, as it is deregulated by chromosomal translocations in a subset of acute lymphoblastic leukemias and non-Hodgkin lymphomas.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Busslinger, M. Transcriptional control of early B cell development. Annu. Rev. Immunol. 22, 55–79 (2004).
Weaver, D. & Baltimore, D. B lymphocyte-specific protein binding near an immunoglobulin κ-chain gene J segment. Proc. Natl. Acad. Sci. USA 84, 1516–1520 (1987).
Waters, S.H., Saikh, K.U. & Stavnezer, J. A B-cell-specific nuclear protein that binds to DNA sites 5′ to immunoglobulin Sα tandem repeats is regulated during differentiation. Mol. Cell. Biol. 9, 5594–5601 (1989).
Barberis, A., Widenhorn, K., Vitelli, L. & Busslinger, M. A novel B-cell lineage-specific transcription factor present at early but not late stages of differentiation. Genes Dev. 4, 849–859 (1990).
Adams, B. et al. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev. 6, 1589–1607 (1992).
Liao, F., Birshtein, B.K., Busslinger, M. & Rothman, P. The transcription factor BSAP (NF-HB) is essential for immunoglobulin germ-line ε transcription. J. Immunol. 152, 2904–2911 (1994).
Tian, J., Okabe, T., Miyazaki, T., Takeshita, S. & Kudo, A. Pax-5 is identical to EBB-1/KLP and binds to the VpreB and λ5 promoters as well as the KI and KII sites upstream of the Jκ genes. Eur. J. Immunol. 27, 750–755 (1997).
Czerny, T., Schaffner, G. & Busslinger, M. DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Dev. 7, 2048–2061 (1993).
Garvie, C.W., Hagman, J. & Wolberger, C. Structural studies of Ets-1/Pax5 complex formation on DNA. Mol. Cell 8, 1267–1276 (2001).
Fitzsimmons, D. et al. Pax-5 (BSAP) recruits Ets proto-oncogene family proteins to form functional ternary complexes on a B-cell-specific promoter. Genes Dev. 10, 2198–2211 (1996).
Nutt, S.L., Morrison, A.M., Dörfler, P., Rolink, A. & Busslinger, M. Identification of BSAP (Pax-5) target genes in early B-cell development by loss- and gain-of-function experiments. EMBO J. 17, 2319–2333 (1998).
Eberhard, D. & Busslinger, M. The partial homeodomain of the transcription factor Pax-5 (BSAP) is an interaction motif for the retinoblastoma and TATA-binding proteins. Cancer Res. 59, 1716s–1724s (1999).
örfler, P. & Busslinger, M. C-terminal activating and inhibitory domains determine the transactivation potential of BSAP (Pax-5), Pax-2 and Pax-8. EMBO J. 15, 1971–1982 (1996).
Emelyanov, A.V., Kovac, C.R., Sepulveda, M.A. & Birshtein, B.K. The interaction of Pax5 (BSAP) with Daxx can result in transcriptional activation in B cells. J. Biol. Chem. 277, 11156–11164 (2002).
Barlev, N.A. et al. A novel human Ada2 homologue functions with Gcn5 or Brg1 to coactivate transcription. Mol. Cell. Biol. 23, 6944–6957 (2003).
Eberhard, D., Jiménez, G., Heavey, B. & Busslinger, M. Transcriptional repression by Pax5 (BSAP) through interaction with corepressors of the Groucho family. EMBO J. 19, 2292–2303 (2000).
Nutt, S.L., Urbánek, P., Rolink, A. & Busslinger, M. Essential functions of Pax5 (BSAP) in pro-B cell development: difference between fetal and adult B lymphopoiesis and reduced V-to-DJ recombination at the IgH locus. Genes Dev. 11, 476–491 (1997).
Urbánek, P., Wang, Z.-Q., Fetka, I., Wagner, E.F. & Busslinger, M. Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5/BSAP. Cell 79, 901–912 (1994).
Nutt, S.L., Heavey, B., Rolink, A.G. & Busslinger, M. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401, 556–562 (1999).
Rolink, A.G., Nutt, S.L., Melchers, F. & Busslinger, M. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature 401, 603–606 (1999).
Schaniel, C., Bruno, L., Melchers, F. & Rolink, A.G. Multiple hematopoietic cell lineages develop in vivo from transplanted Pax5-deficient pre-B I-cell clones. Blood 99, 472–478 (2002).
öflinger, S. et al. Analysis of Notch1 function by in vitro T cell differentiation of Pax5 mutant lymphoid progenitors. J. Immunol. 173, 3935–3944 (2004).
Schaniel, C., Gottar, M., Roosnek, E., Melchers, F. & Rolink, A.G. Extensive in vivo self-renewal, long-term reconstitution capacity, and hematopoietic multipotency of Pax5-deficient precursor B-cell clones. Blood 99, 2760–2766 (2002).
Heavey, B., Charalambous, C., Cobaleda, C. & Busslinger, M. Myeloid lineage switch of Pax5 mutant but not wild-type B cell progenitors by C/EBPα and GATA factors. EMBO J. 22, 3887–3897 (2003).
Nutt, S.L. et al. Independent regulation of the two Pax5 alleles during B-cell development. Nat. Genet. 21, 390–395 (1999).
Fuxa, M. & Busslinger, M. Reporter gene insertions reveal a strictly B lymphoid-specific expression pattern of Pax5 in support of its B cell identity funtion. J. Immunol. 178, 3031–3037 (2007).
Balciunaite, G., Ceredig, R., Massa, S. & Rolink, A.G.A. B220+ CD117+ CD19− hematopoietic progenitor with potent lymphoid and myeloid developmental potential. Eur. J. Immunol. 35, 2019–2030 (2005).
Halder, G., Callaerts, P. & Gehring, W. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 267, 1788–1792 (1995).
Czerny, T. et al. Twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. Mol. Cell 3, 297–307 (1999).
Souabni, A., Cobaleda, C., Schebesta, M. & Busslinger, M. Pax5 promotes B lymphopoiesis and blocks T cell development by repressing Notch1. Immunity 17, 781–793 (2002).
Cotta, C.V., Zhang, Z., Kim, H-G. & Klug, C.A. Pax5 determines B- versus T-cell fate and does not block early myeloid-lineage development. Blood 101, 4342–4346 (2003).
Anderson, K. et al. Ectopic expression of Pax5 promotes self renewal of bi-phenotypic myeloid progenitors co-expressing myeloid and B-cell lineage associated genes. Blood (2007); published online 11 January 2007 (doi:10.1182/blood-2006-05-026021).
O'Riordan, M. & Grosschedl, R. Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity 11, 21–31 (1999).
Seet, C.S., Brumbaugh, R.L. & Kee, B.L. Early B cell factor promotes B lymphopoiesis with reduced interleukin 7 responsiveness in the absence of E2A. J. Exp. Med. 199, 1689–1700 (2004).
Hirokawa, S., Sato, H., Kato, I. & Kudo, A. EBF-regulating Pax5 transcription is enhanced by STAT5 in the early stage of B cells. Eur. J. Immunol. 33, 1824–1829 (2003).
Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004).
Nera, K.-P. et al. Loss of Pax5 promotes plasma cell differentiation. Immunity 24, 283–293 (2006).
Roessler, S. et al. Distinct promoters mediate the regulation of Ebf1 gene expression by IL-7 and Pax5. Mol. Cell. Biol. 27, 579–594 (2007).
Hu, M. et al. Multilineage gene expression precedes commitment in the hematopoietic system. Genes Dev. 11, 774–785 (1997).
Delogu, A. et al. Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 24, 269–281 (2006).
Holmes, M.L., Carotta, S., Corcoran, L.M. & Nutt, S.L. Repression of Flt3 by Pax5 is crucial for B-cell lineage commitment. Genes Dev. 20, 933–938 (2006).
Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B.-I. & Nagasawa, T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20, 707–718 (2004).
Tagoh, H. et al. The mechanism of repression of the myeloid-specific c-fms gene by Pax5 during B lineage restriction. EMBO J. 25, 1070–1080 (2006).
Kozmik, Z., Wang, S., Dörfler, P., Adams, B. & Busslinger, M. The promoter of the CD19 gene is a target for the B-cell-specific transcription factor BSAP. Mol. Cell. Biol. 12, 2662–2672 (1992).
Horcher, M., Souabni, A. & Busslinger, M. Pax5/BSAP maintains the identity of B cells in late B lymphopoiesis. Immunity 14, 779–790 (2001).
Ying, H., Healy, J.I., Goodnow, C.C. & Parnes, J.R. Regulation of mouse CD72 expression during B lymphocyte development. J. Immunol. 161, 4760–4767 (1998).
Schebesta, M., Pfeffer, P.L. & Busslinger, M. Control of pre-BCR signaling by Pax5-dependent activation of the BLNK gene. Immunity 17, 473–485 (2002).
Hayashi, K., Yamamoto, M., Nojima, T., Goitsuka, R. & Kitamura, D. Distinct signaling requirements for Dμ selection, IgH allelic exclusion, pre-B cell transition, and tumor suppression of B cell progenitors. Immunity 18, 825–836 (2003).
Mikkola, I., Heavey, B., Horcher, M. & Busslinger, M. Reversion of B cell commitment upon loss of Pax5 expression. Science 297, 110–113 (2002).
Bassing, C.H., Swat, W. & Alt, F.W. The mechanism and regulation of chromosomal V(D)J recombination. Cell 109 (suppl.), S45–S55 (2002).
Johnston, C.M., Wood, A.L., Bolland, D.J. & Corcoran, A.E. Complete sequence assembly and characterization of the C57BL/6 mouse Ig heavy chain V region. J. Immunol. 176, 4221–4234 (2006).
Hesslein, D.G.T. et al. Pax5 is required for recombination of transcribed, acetylated, 5′ IgH V gene segments. Genes Dev. 17, 37–42 (2003).
Kosak, S.T. et al. Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science 296, 158–162 (2002).
Roldán, E. et al. Locus 'decontraction' and centromeric recruitment contribute to allelic exclusion of the immunoglobulin heavy-chain gene. Nat. Immunol. 6, 31–41 (2005).
Sayegh, C., Jhunjhunwala, S., Riblet, R. & Murre, C. Visualization of looping involving the immunoglobulin heavy-chain locus in developing B cells. Genes Dev. 19, 322–327 (2005).
Su, I.-H. et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat. Immunol. 4, 124–131 (2003).
Johnson, K. et al. B cell–specific loss of histone 3 lysine 9 methylation in the VH locus depends on Pax5. Nat. Immunol. 5, 853–861 (2004).
Morshead, K.B., Ciccone, D.N., Taverna, S.D., Allis, C.D. & Oettinger, M.A. Antigen receptor loci poised for V(D)J rearrangement are broadly associated with BRG1 and flanked by peaks of histone H3 dimethylated at lysine 4. Proc. Natl. Acad. Sci. USA 100, 11577–11582 (2003).
Zhang, Z. et al. Transcription factor Pax5 (BSAP) transactivates the RAG-mediated VH-to-DJH rearrangement of immunoglobulin genes. Nat. Immunol. 7, 616–624 (2006).
Shaffer, A.L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).
Lin, K.-I., Angelin-Duclos, C., Kuo, T.C. & Calame, K. Blimp-1-dependent repression of Pax-5 is required for differentiation of B cells to immunoglobulin M-secreting plasma cells. Mol. Cell. Biol. 22, 4771–4780 (2002).
Shaffer, A.L. et al. BCL-6 represses genes that function in lymphocyte differentiation, inflammation and cell cycle control. Immunity 13, 199–212 (2000).
Reimold, A.M. et al. Transcription factor B cell lineage-specific activator protein regulates the gene for human X-box binding protein 1. J. Exp. Med. 183, 393–401 (1996).
Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).
Xie, H., Ye, M., Feng, R. & Graf, T. Stepwise reprogramming of B cells into macrophages. Cell 117, 663–676 (2004).
Hsu, C.L. et al. Antagonistic effect of CCAAT enhancer-binding protein-α and Pax5 in myeloid or lymphoid lineage choice in common lymphoid progenitors. Proc. Natl. Acad. Sci. USA 103, 672–677 (2006).
Pasqualucci, L. et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 412, 341–346 (2001).
Busslinger, M., Klix, N., Pfeffer, P., Graninger, P.G. & Kozmik, Z. Deregulation of PAX-5 by translocation of the Eμ enhancer of the IgH locus adjacent to two alternative PAX-5 promoters in a diffuse large-cell lymphoma. Proc. Natl. Acad. Sci. USA 93, 6129–6134 (1996).
Lida, S. et al. The t(9;14)(p13;q32) chromosomal translocation associated with lymphoplasmacytoid lymphoma involves the PAX-5 gene. Blood 88, 4110–4117 (1996).
Morrison, A.M. et al. Deregulated PAX-5 transcription from a translocated IgH promoter in marginal zone lymphoma. Blood 92, 3865–3878 (1998).
Poppe, B. et al. PAX5/IGH rearrangement is a recurrent finding in a subset of aggressive B-NHL with complex chromosomal rearrangements. Genes Chromosom. Cancer 44, 218–223 (2005).
Souabni, A., Jochum, W. & Busslinger, M. Oncogenic role of Pax5 in the T-lymphoid lineage upon ectopic expression from the immunoglobulin heavy-chain locus. Blood 109, 281–289 (2007).
Mullighan, C.G. et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature advance online publication, 7 March 2007 (doi:10.1038/nature05690).
Cazzaniga, G. et al. The paired box domain gene PAX5 is fused to ETV6/TEL in an acute lymphoblastic leukemia case. Cancer Res. 61, 4666–4670 (2001).
Strehl, S., König, M., Dworzak, M.N., Kalwak, K. & Haas, O.A. PAX5/ETV6 fusion defines cytogenetic entity dic(9;12)(p13;p13). Leukemia 17, 1121–1123 (2003).
Bousquet, M. et al. A novel PAX5-ELN fusion protein identified in B-cell acute lymphoblastic leukemia acts as a dominant negative on the wild-type PAX5. Blood (2007); published online 19 December 2006 (doi:10.1182/blood-2006-05-025221).
Weng, A.P. et al. Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306, 269–271 (2004).
Acknowledgements
We thank S. Nutt and T. Jenuwein for comments on the manuscript. Supported by Boehringer Ingelheim (M.B.), the Austrian Industrial Research Promotion Fund (M.B.), a Spanish 'Ramon y Cajal' investigator grant (C.C.) and Fondo de Investigaciónes Sanitarias (PI04/0261; C.C.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Cobaleda, C., Schebesta, A., Delogu, A. et al. Pax5: the guardian of B cell identity and function. Nat Immunol 8, 463–470 (2007). https://doi.org/10.1038/ni1454
Published:
Issue Date:
DOI: https://doi.org/10.1038/ni1454