Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila

Abstract

The fruit fly Drosophila melanogaster is a model system for studying innate immunity, including antiviral host defense. Infection with drosophila C virus triggers a transcriptional response that is dependent in part on the Jak kinase Hopscotch. Here we show that successful infection and killing of drosophila with the insect nodavirus flock house virus was strictly dependent on expression of the viral protein B2, a potent inhibitor of processing of double-stranded RNA mediated by the essential RNA interference factor Dicer. Conversely, flies with a loss-of-function mutation in the gene encoding Dicer-2 (Dcr-2) showed enhanced susceptibility to infection by flock house virus, drosophila C virus and Sindbis virus, members of three different families of RNA viruses. These data demonstrate the importance of RNA interference for controlling virus replication in vivo and establish Dcr-2 as a host susceptibility locus for virus infections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FHV is a drosophila pathogen.
Figure 2: The FHV protein B2 is required for successful viral RNA amplification in flies.
Figure 3: RNAi-mediated resistance of drosophila to infection with FHV.
Figure 4: Dicer-2 mutant flies are more sensitive than wild-type flies to virus infection.
Figure 5: Dicer-2 confers protection of drosophila against infection with SINV.

Similar content being viewed by others

References

  1. Medzhitov, R. & Janeway, C.A., Jr. Decoding the patterns of self and nonself by the innate immune system. Science 296, 298–300 (2002).

    Article  CAS  Google Scholar 

  2. Beutler, B. & Rietschel, E.T. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 3, 169–176 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  3. Hoffmann, J.A., Kafatos, F.C., Janeway, C.A. & Ezekowitz, R.A. Phylogenetic perspectives in innate immunity. Science 284, 1313–1318 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  4. Brennan, C.A. & Anderson, K.V. Drosophila: the genetics of innate immune recognition and response. Annu. Rev. Immunol. 22, 457–483 (2004).

    Article  CAS  Google Scholar 

  5. Hultmark, D. Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15, 12–19 (2003).

    Article  CAS  Google Scholar 

  6. Hoffmann, J. The immune response of Drosophila. Nature 426, 33–38 (2003).

    Article  CAS  Google Scholar 

  7. Cherry, S. & Perrimon, N. Entry is a rate-limiting step for viral infection in a Drosophila melanogaster model of pathogenesis. Nat. Immunol. 5, 81–87 (2004).

    Article  CAS  Google Scholar 

  8. Cherry, S. et al. Genome-wide RNAi screen reveals a specific sensitivity of IRES-containing RNA viruses to host translation inhibition. Genes Dev. 19, 445–452 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  9. Sabatier, L. et al. Pherokine-2 and -3: Two Drosophila molecules related to pheromone/odor-binding proteins induced by viral and bacterial infections. Eur. J. Biochem. 270, 3398–3407 (2003).

    Article  CAS  Google Scholar 

  10. Roxstrom-Lindquist, K., Terenius, O. & Faye, I. Parasite-specific immune response in adult Drosophila melanogaster: a genomic study. EMBO Rep. 5, 207–212 (2004).

    Article  PubMed Central  Google Scholar 

  11. Dostert, C. et al. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila. Nat. Immunol. 6, 946–953 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  12. Agaisse, H. & Perrimon, N. The roles of JAK/STAT signaling in Drosophila immune responses. Immunol. Rev. 198, 72–82 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  13. Voinnet, O. Induction and suppression of RNA silencing: insights from viral infections. Nat. Rev. Genet. 6, 206–220 (2005).

    Article  CAS  Google Scholar 

  14. Waterhouse, P.M., Wang, M.B. & Lough, T. Gene silencing as an adaptive defence against viruses. Nature 411, 834–842 (2001).

    Article  CAS  Google Scholar 

  15. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004).

    Article  CAS  Google Scholar 

  16. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  17. Palliser, D. et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439, 89–94 (2006).

    Article  CAS  Google Scholar 

  18. Tompkins, S.M., Lo, C.Y., Tumpey, T.M. & Epstein, S.L. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl. Acad. Sci. USA 101, 8682–8686 (2004).

    Article  CAS  Google Scholar 

  19. Zhang, W. et al. Inhibition of respiratory syncytial virus infection with intranasal siRNA nanoparticles targeting the viral NS1 gene. Nat. Med. 11, 56–62 (2005).

    Article  CAS  Google Scholar 

  20. Ge, Q. et al. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. USA 101, 8676–8681 (2004).

    Article  CAS  Google Scholar 

  21. Bitko, V., Musiyenko, A., Shulyayeva, O. & Barik, S. Inhibition of respiratory viruses by nasally administered siRNA. Nat. Med. 11, 50–55 (2005).

    Article  CAS  Google Scholar 

  22. Li, B.J. et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat. Med. 11, 944–951 (2005).

    Article  CAS  Google Scholar 

  23. Li, W.X. et al. Interferon antagonist proteins of influenza and vaccinia viruses are suppressors of RNA silencing. Proc. Natl. Acad. Sci. USA 101, 1350–1355 (2004).

    Article  CAS  Google Scholar 

  24. Li, H., Li, W.X. & Ding, S.W. Induction and suppression of RNA silencing by an animal virus. Science 296, 1319–1321 (2002).

    Article  CAS  Google Scholar 

  25. Schneemann, A., Reddy, V. & Johnson, J.E. The structure and function of nodavirus particles: a paradigm for understanding chemical biology. Adv. Virus Res. 50, 381–446 (1998).

    Article  CAS  Google Scholar 

  26. Albarino, C.G., Price, B.D., Eckerle, L.D. & Ball, L.A. Characterization and template properties of RNA dimers generated during flock house virus RNA replication. Virology 289, 269–282 (2001).

    Article  CAS  Google Scholar 

  27. Lu, R. et al. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436, 1040–1043 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  28. Chao, J.A. et al. Dual modes of RNA-silencing suppression by Flock House virus protein B2. Nat. Struct. Mol. Biol. 12, 952–957 (2005).

    Article  CAS  Google Scholar 

  29. Schott, D.H., Cureton, D.K., Whelan, S.P. & Hunter, C.P. An antiviral role for the RNA interference machinery in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 102, 18420–18424 (2005).

    Article  CAS  Google Scholar 

  30. Wilkins, C. et al. RNA interference is an antiviral defence mechanism in Caenorhabditis elegans. Nature 436, 1044–1047 (2005).

    Article  CAS  Google Scholar 

  31. Franz, A.W. et al. Engineering RNA interference-based resistance to dengue virus type 2 in genetically modified Aedes aegypti. Proc. Natl. Acad. Sci. USA 103, 4198–4203 (2006).

    Article  CAS  Google Scholar 

  32. Keene, K.M. et al. RNA interference acts as a natural antiviral response to O'nyong-nyong virus (Alphavirus; Togaviridae) infection of Anopheles gambiae. Proc. Natl. Acad. Sci. USA 101, 17240–17245 (2004).

    Article  CAS  Google Scholar 

  33. Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M.C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  34. Lee, Y.S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004).

    Article  CAS  Google Scholar 

  35. Ratcliff, F., Harrison, B.D. & Baulcombe, D.C. A similarity between viral defense and gene silencing in plants. Science 276, 1558–1560 (1997).

    Article  CAS  Google Scholar 

  36. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, E104 (2004).

    Article  PubMed Central  Google Scholar 

  37. Gasciolli, V., Mallory, A.C., Bartel, D.P. & Vaucheret, H. Partially redundant functions of Arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr. Biol. 15, 1494–1500 (2005).

    Article  CAS  Google Scholar 

  38. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).

    Article  CAS  Google Scholar 

  39. Kawai, T. & Akira, S. Innate immune recognition of viral infection. Nat. Immunol. 7, 131–137 (2006).

    Article  CAS  PubMed Central  Google Scholar 

  40. Galiana-Arnoux, D. & Imler, J. Toll-like receptors and antiviral innate immunity. Tissue Antigens 67, 267–276 (2006).

    Article  CAS  Google Scholar 

  41. Miller, L.K. An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol. 9, 323–328 (1999).

    Article  CAS  Google Scholar 

  42. Roignant, J.Y. et al. Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. RNA 9, 299–308 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  43. Palauqui, J.C., Elmayan, T., Pollien, J.M. & Vaucheret, H. Systemic acquired silencing: transgene-specific post-transcriptional silencing is transmitted by grafting from silenced stocks to non-silenced scions. EMBO J. 16, 4738–4745 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  44. Voinnet, O., Vain, P., Angell, S. & Baulcombe, D.C. Systemic spread of sequence-specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA. Cell 95, 177–187 (1998).

    Article  CAS  Google Scholar 

  45. Georgel, P. et al. Drosophila immune deficiency (IMD) is a death domain protein that activates the antibacterial response and can promote apoptosis. Dev. Cell 1, 503–514 (2001).

    Article  CAS  Google Scholar 

  46. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  Google Scholar 

  47. Krishna, N.K., Marshall, D. & Schneemann, A. Analysis of RNA packaging in wild-type and mosaic protein capsids of flock house virus using recombinant baculovirus vectors. Virology 305, 10–24 (2003).

    Article  CAS  Google Scholar 

  48. Ball, L.A. Requirements for the self-directed replication of flock house virus RNA 1. J. Virol. 69, 720–727 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Santiago for technical assistance; S. Ozkan and R. Walther for help with transgenesis; D. Zachary for help with electron microscopy; R. Carthew for Dicer-2 mutant lines; J. Strauss for anti-SINV; J. McCauley for titered stock of SINV; and O. Voinnet for discussions and comments. Supported by Centre National de la Recherche Scientifique, Ministère de la Technologie et de l'Enseignement Supérieur (ACI Microbiologie to J.-L.I.), the National Institutes of Health (GM053491 to A.S.), a Centre National de la Recherche Scientifique post-doctoral fellowship (D.G.A.) and the Ministère de la Recherche du Grand-Duché du Luxembourg (C.D.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

FHV RNA1ΔB2 transgenic flies are protected against a challenge with FHV but not with the unrelated virus DCV. (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galiana-Arnoux, D., Dostert, C., Schneemann, A. et al. Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat Immunol 7, 590–597 (2006). https://doi.org/10.1038/ni1335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing