Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conflicting selective forces affect T cell receptor contacts in an immunodominant human immunodeficiency virus epitope

Abstract

Cytotoxic T lymphocytes (CTLs) are critical for the control of human immunodeficiency virus, but containment of virus replication can be undermined by mutations in CTL epitopes that lead to virus escape. We analyzed the evolution in vivo of an immunodominant, HLA-A2–restricted CTL epitope and found two principal, diametrically opposed evolutionary pathways that exclusively affect T cell–receptor contact residues. One pathway was characterized by acquisition of CTL escape mutations and the other by selection for wild-type amino acids. The pattern of CTL responses to epitope variants shaped which variant(s) prevailed in the virus population. The pathways notably influenced the amount of plasma virus, as patients with efficient CTL selection had lower plasma viral loads than did patients without efficient selection. Thus, viral escape from CTL responses does not necessarily correlate with disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SLYNTVATL epitope evolution over approximately the first 10 years of disease progression in HIV+ patients.
Figure 2: Representative phylogenetic trees of p17 and p24 gag sequences (HXB2 coordinates 845–1260).
Figure 3: Differences in plasma viral load and HIV SLYNTVATL sequence.
Figure 4: The recognition of SLYNTVATL variants by PBMCs from A*02+ patients.
Figure 5: SLYNTVATL structure in p17 and HLA-A2.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Protein Data Bank

References

  1. McMichael, A. & Klenerman, P. HIV/AIDS. HLA leaves its footprints on HIV. Science 296, 1410–1411 (2002).

    Article  CAS  Google Scholar 

  2. Moore, C.B. et al. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296, 1439–1443 (2002).

    Article  CAS  Google Scholar 

  3. Brander, C. & Walker, B.D. Gradual adaptation of HIV to human host populations: good or bad news? Nat Med. 9, 1359–1362 (2003).

    Article  CAS  Google Scholar 

  4. Allen, T.M. et al. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature 407, 386–390 (2000).

    Article  CAS  Google Scholar 

  5. Borrow, P. et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat. Med. 3, 205–211 (1997).

    Article  CAS  Google Scholar 

  6. Price, D.A. et al. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc. Natl. Acad. Sci. USA 94, 1890–1895 (1997).

    Article  CAS  Google Scholar 

  7. Jamieson, B.D. et al. Epitope escape mutation and decay of human immunodeficiency virus type 1-specific CTL responses. J. Immunol. 171, 5372–5379 (2003).

    Article  CAS  Google Scholar 

  8. Kelleher, A.D. et al. Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses. J. Exp. Med. 193, 375–386 (2001).

    Article  CAS  Google Scholar 

  9. Leslie, A.J. et al. HIV evolution: CTL escape mutation and reversion after transmission. Nat. Med. 10, 282–289 (2004).

    Article  CAS  Google Scholar 

  10. Altfeld, M. et al. Influence of HLA-B57 on clinical presentation and viral control during acute HIV-1 infection. AIDS 17, 2581–2591 (2003).

    Article  CAS  Google Scholar 

  11. Goulder, P.J. et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat. Med. 3, 212–217 (1997).

    Article  CAS  Google Scholar 

  12. Altfeld, M. et al. The majority of currently circulating human immunodeficiency virus type 1 clade B viruses fail to prime cytotoxic T-lymphocyte responses against an otherwise immunodominant HLA-A2-restricted epitope: implications for vaccine design. J. Virol. 79, 5000–5005 (2005).

    Article  CAS  Google Scholar 

  13. Goulder, P.J. et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412, 334–338 (2001).

    Article  CAS  Google Scholar 

  14. Browning, M. & Krausa, P. Genetic diversity of HLA-A2: evolutionary and functional significance. Immunol. Today 17, 165–170 (1996).

    Article  CAS  Google Scholar 

  15. Johnson, R.P. et al. HIV-1 gag-specific cytotoxic T lymphocytes recognize multiple highly conserved epitopes. Fine specificity of the gag-specific response defined by using unstimulated peripheral blood mononuclear cells and cloned effector cells. J. Immunol. 147, 1512–1521 (1991).

    CAS  PubMed  Google Scholar 

  16. Tsomides, T.J. et al. Naturally processed viral peptides recognized by cytotoxic T lymphocytes on cells chronically infected by human immunodeficiency virus type 1. J. Exp. Med. 180, 1283–1293 (1994).

    Article  CAS  Google Scholar 

  17. HIV Sequence Compendium 2003 (eds. Leitner, T. et al.) LA-UR 04-7420 (Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, New Mexico, USA, 2004).

  18. Ogg, G.S. et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 279, 2103–2106 (1998).

    Article  CAS  Google Scholar 

  19. Goulder, P.J. et al. Substantial differences in specificity of HIV-specific cytotoxic T cells in acute and chronic HIV infection. J. Exp. Med. 193, 181–194 (2001).

    Article  CAS  Google Scholar 

  20. Ogg, G.S. et al. Longitudinal phenotypic analysis of human immunodeficiency virus type 1-specific cytotoxic T lymphocytes: correlation with disease progression. J. Virol. 73, 9153–9160 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput. Appl. Biosci. 13, 555–556 (1997).

    CAS  PubMed  Google Scholar 

  22. Goulder, P.J. et al. Rapid definition of five novel HLA-A*3002-restricted human immunodeficiency virus-specific cytotoxic T-lymphocyte epitopes by elispot and intracellular cytokine staining assays. J. Virol. 75, 1339–1347 (2001).

    Article  CAS  Google Scholar 

  23. Brander, C. et al. Lack of strong immune selection pressure by the immunodominant, HLA-A*0201-restricted cytotoxic T lymphocyte response in chronic human immunodeficiency virus-1 infection. J. Clin. Invest. 101, 2559–2566 (1998).

    Article  CAS  Google Scholar 

  24. Sette, A. et al. The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes. J. Immunol. 153, 5586–5592 (1994).

    CAS  PubMed  Google Scholar 

  25. Lee, J.K. et al. T cell cross-reactivity and conformational changes during TcR engagement. J. Exp. Med. 200, 1455–1466 (2004).

    Article  CAS  Google Scholar 

  26. van der Merwe, P.A. & Davis, S.J. Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol. 21, 659–684 (2003).

    Article  CAS  Google Scholar 

  27. Madden, D.R., Garboczi, D.N. & Wiley, D.C. The antigenic identity of peptide-MHC complexes: a comparison of the conformations of five viral peptides presented by HLA-A2. Cell 75, 693–708 (1993).

    Article  CAS  Google Scholar 

  28. Ding, Y.H. et al. Two human T cell receptors bind in a similar diagonal mode to the HLA-A2/Tax peptide complex using different TCR amino acids. Immunity 8, 403–411 (1998).

    Article  CAS  Google Scholar 

  29. Garboczi, D.N. et al. Structure of the complex between human T-cell receptor, viral peptide and HLA-A2. Nature 384, 134–141 (1996).

    Article  CAS  Google Scholar 

  30. Stewart-Jones, G.B., McMichael, A.J., Bell, J.I., Stuart, D.I. & Jones, E.Y. A structural basis for immunodominant human T cell receptor recognition. Nat. Immunol. 4, 657–663 (2003).

    Article  CAS  Google Scholar 

  31. Edwards, C.T., Pfafferott, K.J., Goulder, P.J., Phillips, R.E. & Holmes, E.C. Intrapatient escape in the A*0201-restricted epitope SLYNTVATL drives evolution of human immunodeficiency virus type 1 at the population level. J. Virol. 79, 9363–9366 (2005).

    Article  CAS  Google Scholar 

  32. Feeney, M.E. et al. Immune escape precedes breakthrough human immunodeficiency virus type 1 viremia and broadening of the cytotoxic T-lymphocyte response in an HLA-B27-positive long-term-nonprogressing child. J. Virol. 78, 8927–8930 (2004).

    Article  CAS  Google Scholar 

  33. Goulder, P.J. et al. Combined structural and immunological refinement of HIV-1 HLA-B8-restricted cytotoxic T lymphocyte epitopes. Eur. J. Immunol. 27, 1515–1521 (1997).

    Article  CAS  Google Scholar 

  34. Yokomaku, Y. et al. Impaired processing and presentation of cytotoxic-T-lymphocyte (CTL) epitopes are major escape mechanisms from CTL immune pressure in human immunodeficiency virus type 1 infection. J. Virol. 78, 1324–1332 (2004).

    Article  CAS  Google Scholar 

  35. Matano, T. et al. Cytotoxic T lymphocyte-based control of simian immunodeficiency virus replication in a preclinical AIDS vaccine trial. J. Exp. Med. 199, 1709–1718 (2004).

    Article  CAS  Google Scholar 

  36. Friedrich, T.C. et al. Reversion of CTL escape-variant immunodeficiency viruses in vivo. Nat. Med. 10, 275–281 (2004).

    Article  CAS  Google Scholar 

  37. Kan-Mitchell, J. et al. The HIV-1 HLA-A2-SLYNTVATL is a help-independent CTL epitope. J. Immunol. 172, 5249–5261 (2004).

    Article  CAS  Google Scholar 

  38. Sun, J.C. & Bevan, M.J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003).

    Article  CAS  Google Scholar 

  39. Shedlock, D.J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    Article  CAS  Google Scholar 

  40. Krogsgaard, M. et al. Evidence that structural rearrangements and/or flexibility during TCR binding can contribute to T cell activation. Mol. Cell 12, 1367–1378 (2003).

    Article  CAS  Google Scholar 

  41. Iversen, A.K. et al. Cervical human immunodeficiency virus type 1 shedding is associated with genital beta-chemokine secretion. J. Infect. Dis. 178, 1334–1342 (1998).

    Article  CAS  Google Scholar 

  42. Iversen, A.K. et al. Distinct determinants of human immunodeficiency virus type 1 RNA and DNA loads in vaginal and cervical secretions. J. Infect. Dis. 177, 1214–1220 (1998).

    Article  CAS  Google Scholar 

  43. Iversen, A.K. et al. Presence of multiple HIV subtypes and a high frequency of subtype chimeric viruses in heterosexually infected women. J. Acquir. Immune Defic. Syndr. 22, 325–332 (1999).

    Article  CAS  Google Scholar 

  44. Brander, C. et al. Efficient processing of the immunodominant, HLA-A*0201-restricted human immunodeficiency virus type 1 cytotoxic T-lymphocyte epitope despite multiple variations in the epitope flanking sequences. J. Virol. 73, 10191–10198 (1999).

    PubMed  PubMed Central  Google Scholar 

  45. Goulder, P.J. et al. Mother-to-child transmission of HIV infection and CTL escape through HLA-A2-SLYNTVATL epitope sequence variation. Immunol. Lett. 79, 109–116 (2001).

    Article  CAS  Google Scholar 

  46. Goulder, P.J. et al. Patterns of immunodominance in HIV-1-specific cytotoxic T lymphocyte responses in two human histocompatibility leukocyte antigens (HLA)-identical siblings with HLA-A*0201 are influenced by epitope mutation. J. Exp. Med. 185, 1423–1433 (1997).

    Article  CAS  Google Scholar 

  47. Sylvester-Hvid, C. et al. Establishment of a quantitative ELISA capable of determining peptide - MHC class I interaction. Tissue Antigens 59, 251–258 (2002).

    Article  CAS  Google Scholar 

  48. Dong, T. et al. An HLA-B35-restricted epitope modified at an anchor residue results in an antagonist peptide. Eur. J. Immunol. 26, 335–339 (1996).

    Article  CAS  Google Scholar 

  49. Garboczi, D.N., Madden, D.R. & Wiley, D.C. Five viral peptide-HLA-A2 co-crystals. Simultaneous space group determination and X-ray data collection. J. Mol. Biol. 239, 581–587 (1994).

    Article  CAS  Google Scholar 

  50. Willcox, B.E. et al. TCR binding to peptide-MHC stabilizes a flexible recognition interface. Immunity 10, 357–365 (1999).

    Article  CAS  Google Scholar 

  51. Parham, P. & Brodsky, F.M. Partial purification and some properties of BB7.2. A cytotoxic monoclonal antibody with specificity for HLA-A2 and a variant of HLA-A28. Hum. Immunol. 3, 277–299 (1981).

    Article  CAS  Google Scholar 

  52. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  53. Thompson, J.D., Higgins, D.G. & Gibson, T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  54. Maddison, W.P. & Maddison, D.R. MacClade - Analysis of Phylogeny and Character Evolution - Version 4, (Sinauer Associates, Inc., Sunderland, MA, 2001).

    Google Scholar 

  55. Learn, G.H., Jr. et al. Maintaining the integrity of human immunodeficiency virus sequence databases. J. Virol. 70, 5720–5730 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rose, P.P. & Korber, B.T. Detecting hypermutations in viral sequences with an emphasis on G -> A hypermutation. Bioinformatics 16, 400–401 (2000).

    Article  CAS  Google Scholar 

  57. Iversen, A.K. Genital HIV shedding in women. AIDS Patient Care STDS 13, 695–701 (1999).

    Article  CAS  Google Scholar 

  58. Huelsenbeck, J.P. & Crandall, K.A. Phylogeny estimation and hypothesis testing using maximum likelihood. Annu. Rev. Ecol. Syst. 28, 437–466 (1997).

    Article  Google Scholar 

  59. Posada, D. & Crandall, K.A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998).

    Article  CAS  Google Scholar 

  60. Swofford, D.L. PAUP* 4.0: Phylogenetic Analysis Using Parsimony (*and Other Methods) 4.0b2a edn. (Sinauer Associates, Sunderland, Massachusetts, 1999).

    Google Scholar 

  61. Akaike, H. A new look at statistical model identification. IEEE Trans. Autom. Contr. 19, 716–723 (1974).

    Article  Google Scholar 

  62. Yang, Z. Maximum likelihood estimation on large phylogenies and analysis of adaptive evolution in human influenza virus A. J. Mol. Evol. 51, 423–432 (2000).

    Article  CAS  Google Scholar 

  63. Nielsen, R. & Yang, Z. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148, 929–936 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hill, C.P., Worthylake, D., Bancroft, D.P., Christensen, A.M. & Sundquist, W.I. Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc. Natl Acad. Sci. USA 93, 3099–3104 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank patients for donating samples, N. Willcox for comments on the manuscript, P. Goulder for discussions and C. Siebold for assistance with crystallographic refinement. Supported by the Novo Nordisk Foundation, the Danish AIDS foundation, the University of Washington Center for AIDS Research, International AIDS Vaccine Initiative, Cancer Research UK (E.Y.J.) and Medical Research Council UK (A.K.N.I. and A.J.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astrid K N Iversen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Additional clinical and sampling data (PDF 17 kb)

Supplementary Table 2

Crystallographic data (PDF 27 kb)

Supplementary Methods (PDF 59 kb)

Supplementary Note (PDF 31 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iversen, A., Stewart-Jones, G., Learn, G. et al. Conflicting selective forces affect T cell receptor contacts in an immunodominant human immunodeficiency virus epitope. Nat Immunol 7, 179–189 (2006). https://doi.org/10.1038/ni1298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1298

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing