Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance

Abstract

A fundamental question in hematopoietic stem cell (HSC) biology is how self-renewal is controlled. Here we show that the molecular regulation of two critical elements of self-renewal, inhibition of differentiation and induction of proliferation, can be uncoupled, and we identify Notch signaling as a key factor in inhibiting differentiation. Using transgenic Notch reporter mice, we found that Notch signaling was active in HSCs in vivo and downregulated as HSCs differentiated. Inhibition of Notch signaling led to accelerated differentiation of HSCs in vitro and depletion of HSCs in vivo. Finally, intact Notch signaling was required for Wnt-mediated maintenance of undifferentiated HSCs but not for survival or entry into the cell cycle in vitro. These data suggest that Notch signaling has a dominant function in inhibiting differentiation and provide a model for how HSCs may integrate multiple signals to maintain the stem cell state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Notch signaling is highly active in HSCs and reduced in differentiated cells.
Figure 2: Notch signaling is downregulated during differentiation and defines a more primitive subset within the HSC population.
Figure 3: Inhibition of Notch signaling in HSCs leads to accelerated differentiation.
Figure 4: Inhibition of Notch signaling in vivo leads to depletion of the HSC population after long-term reconstitution.
Figure 5: Inhibition of Notch signaling disrupts ability of Wnt signaling to maintain HSCs in an undifferentiated state.

Similar content being viewed by others

References

  1. Till, J. & McCulloch, E. A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc. Natl. Acad. Sci. USA 51, 29–36 (1963).

    Article  Google Scholar 

  2. Spangrude, G.J., Heimfeld, S. & Weissman, I.L. Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Uchida, N. & Weissman, I.L. Searching for hematopoietic stem cells: evidence that Thy-1.1lo Lin Sca-1+ cells are the only stem cells in C57BL/Ka-Thy-1.1 bone marrow. J. Exp. Med. 175, 175–184 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Goodell, M.A., Brose, K., Paradis, G., Conner, A.S. & Mulligan, R.C. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med. 183, 1797–1806 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Visser, J.W., Bauman, J.G., Mulder, A.H., Eliason, J.F. & de Leeuw, A.M. Isolation of murine pluripotent hemopoietic stem cells. J. Exp. Med. 159, 1576–1590 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. Osawa, M., Hanada, K., Hamada, H. & Nakauchi, H. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Christensen, J.L. & Weissman, I.L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl. Acad. Sci. USA 98, 14541–14546 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow LinSca1+c- kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15, 659–669 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Weissman, I.L. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science 287, 1442–1446 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Maillard, I., Adler, S.H. & Pear, W.S. Notch and the immune system. Immunity 19, 781–791 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Reya, T. & Clevers, H. Wnt signaling in stem cells and cancer. Nature (in the press).

  12. Artavanis-Tsakonas, S., Matsuno, K. & Fortini, M.E. Notch Signaling. Science 268, 225–232 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Aster, J.C. & Pear, W.S. Notch signaling in leukemia. Curr. Opin. Hematol. 8, 237–244 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Tekmal, R.R. & Keshava, N. Role of MMTV integration locus cellular genes in breast cancer. Front. Biosci. 2, d519–d526 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Callahan, R. & Raafat, A. Notch signaling in mammary gland tumorigenesis. J. Mammary Gland Biol. Neoplasia 6, 23–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Allman, D., Punt, J.A., Izon, D.J., Aster, J.C. & Pear, W.S. An invitation to T and more: notch signaling in lymphopoiesis. Cell 109, S1–11 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Wu, L. et al. MAML1, a human homologue of Drosophila mastermind, is a transcriptional co-activator for NOTCH receptors. Nat. Genet. 26, 484–489 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Varnum-Finney, B. et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat. Med. 6, 1278–1281 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Stier, S., Cheng, T., Dombkowski, D., Carlesso, N. & Scadden, D.T. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 99, 2369–2378 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Karanu, F.N. et al. The notch ligand jagged-1 represents a novel growth factor of human hematopoietic stem cells. J. Exp. Med. 192, 1365–1372 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cadigan, K.M. & Nusse, R. Wnt signaling: a common theme in animal development. Genes Dev. 11, 3286–3305 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Korinek, V. et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Morin, P.J. et al. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science 275, 1787–1790 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Tsukamoto, A., Grosschedl, R., Guzman, R., Parslow, T. & Varmus, H.E. Expression of the int-1 gene in transgenic mice is associated with mammary gland hyperplasia and adenocarcinomas in male and female mice. Cell 55, 619–625 (1988).

    Article  CAS  PubMed  Google Scholar 

  25. Wodarz, A. & Nusse, R. Mechanisms of Wnt signaling in development. Annu. Rev. Cell Dev. Biol. 14, 59–88 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. Pinson, K.I., Brennan, J., Monkley, S., Avery, B.J. & Skarnes, W.C. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 407, 535–538 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Tamai, K. et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 407, 530–535 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Wehrli, M. et al. arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407, 527–530 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Willert, K. & Nusse, R. β-catenin: a key mediator of Wnt signaling. Curr. Opin. Genet. Dev. 8, 95–102 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Cavallo, R.A. et al. Drosophila Tcf and Groucho interact to repress Wingless signalling activity. Nature 395, 604–608 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Roose, J. et al. The Xenopus Wnt effector XTcf3 interacts with Groucho-related transcriptional repressors. Nature 395, 608–612 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Eastman, Q. & Grosschedl, R. Regulation of LEF-1/TCF transcription factors by Wnt and other signals. Curr. Opin. Cell Biol. 11, 233–240 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Austin, T.W., Solar, G.P., Ziegler, F.C., Liem, L. & Matthews, W. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood 89, 3624–3635 (1997).

    CAS  PubMed  Google Scholar 

  34. Van Den Berg, D.J., Sharma, A.K., Bruno, E. & Hoffman, R. Role of members of the Wnt gene family in human hematopoiesis. Blood 92, 3189–3202 (1998).

    CAS  PubMed  Google Scholar 

  35. Reya, T. et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Willert, K. et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Murdoch, B. et al. Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo. Proc. Natl. Acad. Sci. USA 100, 3422–3427 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, J. et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425, 836–841 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Calvi, L.M. et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425, 841–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Matsuzaki, Y., Kinjo, K., Mulligan, R.C. & Okano, H. Unexpectedly efficient homing capacity of purified murine hematopoietic stem cells. Immunity 20, 87–93 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Artavanis-Tsakonas, S., Rand, M.D. & Lake, R.J. Notch signaling: cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Wettstein, D.A., Turner, D.L. & Kintner, C. The Xenopus homolog of Drosophila Suppressor of Hairless mediates Notch signaling during primary neurogenesis. Development 124, 693–702 (1997).

    CAS  PubMed  Google Scholar 

  43. Oka, C. et al. Disruption of the mouse RBP-J kappa gene results in early embryonic death. Development 121, 3291–3301 (1995).

    CAS  PubMed  Google Scholar 

  44. Wolfe, M.S. et al. Peptidomimetic probes and molecular modeling suggest that Alzheimer's γ-secretase is an intramembrane-cleaving aspartyl protease. Biochemistry 38, 4720–4727 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. DasGupta, R. & Fuchs, E. Multiple roles for activated LEF/TCF transcription complexes during hair follicle development and differentiation. Development 126, 4557–4568 (1999).

    CAS  PubMed  Google Scholar 

  46. Karanu, F.N. et al. Human homologues of Delta-1 and Delta-4 function as mitogenic regulators of primitive human hematopoietic cells. Blood 97, 1960–1967 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Ivanova, N.B. et al. A stem cell molecular signature. Science 298, 601–604 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Vercauteren, S.M. & Sutherland, H.J. Constitutively active Notch4 promotes early human hematopoietic progenitor cell maintenance while inhibiting differentiation and causes lymphoid abnormalities in vivo. Blood 1, 3–5 (2004).

    Google Scholar 

  49. Kumano, K. et al. Notch1 but not Notch2 is essential for generating hematopoietic stem cells from endothelial cells. Immunity 18, 699–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Hadland, B.K. et al. A requirement for Notch1 distinguishes 2 phases of definitive hematopoiesis during development. Blood 104, 3097–3105 (2004).

    Article  CAS  PubMed  Google Scholar 

  51. Harper, J.A., Yuan, J.S., Tan, J.B., Visan, I. & Guidos, C.J. Notch signaling in development and disease. Clin. Genet. 64, 461–472 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Chambers, C.B. et al. Spatiotemporal selectivity of response to Notch1 signals in mammalian forebrain precursors. Development 128, 689–702 (2001).

    CAS  PubMed  Google Scholar 

  53. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. He, T.C. et al. Identification of c-MYC as a target of the APC pathway. Science 281, 1509–1512 (1998).

    Article  CAS  PubMed  Google Scholar 

  55. Shtutman, M. et al. The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway. Proc. Natl. Acad. Sci. USA 96, 5522–5527 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tetsu, O. & McCormick, F. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422–426 (1999).

    Article  CAS  PubMed  Google Scholar 

  57. Couso, J.P. & Martinez-Arias, A. Notch is required for wingless signaling in the epidermis of Drosophila. Cell 79, 259–272 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Espinosa, L., Ingles-Esteve, J., Aguilera, C. & Bigas, A. Phosphorylation by glycogen synthase kinase-3β down-regulates Notch activity, a link for Notch and Wnt pathways. J. Biol. Chem. 278, 32227–32235 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P. & Brivanlou, A.H. Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med. 10, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Chenn, A. & Walsh, C.A. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297, 365–369 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Zechner, D. et al. β-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev. Biol. 258, 406–418 (2003).

    Article  CAS  PubMed  Google Scholar 

  62. Zhu, A.J. & Watt, F.M. β-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development 126, 2285–2298 (1999).

    CAS  PubMed  Google Scholar 

  63. Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G. & Birchmeier, W. β-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Merrill, B.J., Gat, U., DasGupta, R. & Fuchs, E. Tcf3 and Lef1 regulate lineage differentiation of multipotent stem cells in skin. Genes Dev. 15, 1688–1705 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Korinek, V. et al. Depletion of epithelia stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet. 19, 1–5 (1998).

    Article  Google Scholar 

  66. van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Reya, T., Morrison, S.J., Clarke, M.F. & Weissman, I.L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  68. Domen, J., Cheshier, S.H. & Weissman, I.L. The role of apoptosis in the regulation of hematopoietic stem cells: Overexpression of Bcl-2 increases both their number and repopulation potential. J. Exp. Med. 191, 253–264 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bjornsson, J.M. et al. Reduced proliferative capacity of hematopoietic stem cells deficient in Hoxb3 and Hoxb4. Mol. Cell. Biol. 23, 3872–3883 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim, J.Y. et al. Defective long-term repopulating ability in hematopoietic stem cells lacking the Polycomb-group gene rae28. Eur. J. Haematol. 73, 75–84 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Kintner for the dnXSu(H) construct; S. Artavanis-Tsakonas for the dominant negative MAML1 construct; R. Nusse for help with Wnt3A purification; G. Nolan for providing the retrovirus packaging system; A. Bhandoola, R. Storms and C. Voermans for advice and help; D. Stemmle for lab management; D. McDonnell for use of the iCycler; and I. Weissman, G. Fishell, W. Pear, A. Means and B. Hogan for critical review of this manuscript. Supported by American Heart Association predoctoral fellowships (A.W.D. and K.L.C.), Burroughs Wellcome Fund Cancer Award (N.G.), Kimmel Foundation Scholar Award (N.G.), Cancer Research Institute Investigator Award (T.R.), Ellison Medical Foundation Scholar Award (T.R.) and National Institutes of Health (DK63031 to T.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tannishtha Reya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

GFP protein expression reflects active Notch signaline in TNR hematopoietic cells. (PDF 113 kb)

Supplementary Fig. 2

Control staining for cKti and of bone sections from WT mice. (PDF 197 kb)

Supplementary Fig. 3

Analysis of Notch reporter activity in lineage positive cells. (PDF 632 kb)

Supplementary Fig. 4

Pattern of Notch signaling activation in subpopulations of CD4CD8 double negative thymocytes. (PDF 251 kb)

Supplementary Fig. 5

Analysis of individual lineage markers on in vitro differentiated KLS GFP+ cells. (PDF 57 kb)

Supplementary Fig. 6

Expression of dnXSu(H) in virally-transduced HSCs. (PDF 141 kb)

Supplementary Fig. 7

Lineage markers are equivalently expressed in uninfected KTLS cells transduced with control or dnXSu(H) retroviruses. (PDF 81 kb)

Supplementary Fig. 8

Inhibition of Notch signaling in vivo leads to an increase in myeloid and B lineage cells and to vector silencing in double negative thymocytes in vivo. (PDF 228 kb)

Supplementary Methods (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duncan, A., Rattis, F., DiMascio, L. et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 6, 314–322 (2005). https://doi.org/10.1038/ni1164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1164

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing