Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T cell killing does not require the formation of a stable mature immunological synapse

A Corrigendum to this article was published on 01 June 2004

Abstract

A notable feature of T lymphocyte recognition on other cell surfaces is the formation of a stable mature immunological synapse. Here we use a single-molecule labeling method to directly measure the number of ligands a cytotoxic T cell engages and track the consequences of that interaction by three-dimensional video microscopy. Like helper T cells, cytotoxic T cells were able to detect even a single foreign antigen but required about ten complexes of peptide–major histocompatibility complex (pMHC) to achieve full calcium increase and to form a mature synapse. Thus, cytotoxic T cells and helper T cells are more uniform in their antigen sensitivities than previously thought. Furthermore, only three pMHC complexes were required for killing, showing that stable synapse formation and complete signaling are not required for cytotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Both 2C and OT-1 CTLs recognize wild-type and extended (and biotinylated) antigen-MHC complexes with equal efficacy.
Figure 2: Dose response of T cell calcium signals to antigenic pMHC complexes in the T cell–APC interface.
Figure 3: Correlation of cytotoxicity with spatial distribution of pMHC complexes at the immunological synapse.
Figure 4: Distribution of antigen receptors and signal transduction components at the MHC class I–restricted immunological synapse.
Figure 5: Antigen-induced clustering of H-2Kb(D227K) in presence of wild-type H-2Kb.

Similar content being viewed by others

References

  1. Bromley, S.K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375– 396 (2001).

    Article  CAS  Google Scholar 

  2. Delon, J. & Germain, R.N. Information transfer at the immunological synapse. Curr. Biol. 10, R923– 933 (2000).

    Article  CAS  Google Scholar 

  3. Davis, M.M. et al. Dynamics of cell surface molecules during T cell recognition. Annu. Rev. Biochem. 72, 717– 742 (2003).

    Article  CAS  Google Scholar 

  4. Sykulev, Y., Joo, M., Vturina, I., Tsomides, T.J. & Eisen, H.N. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4, 565– 571 (1996).

    Article  CAS  Google Scholar 

  5. Kimachi, K., Croft, M. & Grey, H.M. The minimal number of antigen-major histocompatibility complex class II complexes required for activation of naive and primed T cells. Eur. J. Immunol. 27, 3310– 3317 (1997).

    Article  CAS  Google Scholar 

  6. Demotz, S., Grey, H.M. & Sette, A. The minimal number of class II MHC-antigen complexes needed for T cell activation. Science 249, 1028– 1030 (1990).

    Article  CAS  Google Scholar 

  7. Harding, C.V. & Unanue, E.R. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature 346, 574– 576 (1990).

    Article  CAS  Google Scholar 

  8. Christinck, E.R., Luscher, M.A., Barber, B.H. & Williams, D.B. Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis. Nature 352, 67– 70 (1991).

    Article  CAS  Google Scholar 

  9. Reay, P.A. et al. Determination of the relationship between T cell responsiveness and the number of MHC-peptide complexes using specific monoclonal antibodies. J. Immunol. 164, 5626– 5634 (2000).

    Article  CAS  Google Scholar 

  10. Brower, R.C. et al. Minimal requirements for peptide mediated activation of CD8+ CTL. Mol. Immunol. 31, 1285– 1293 (1994).

    Article  CAS  Google Scholar 

  11. Irvine, D.J., Purbhoo, M.A., Krogsgaard, M. & Davis, M.M. Direct observation of ligand recognition by T cells. Nature 419, 845– 849 (2002).

    Article  CAS  Google Scholar 

  12. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82– 86 (1998).

    Article  CAS  Google Scholar 

  13. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221– 227 (1999).

    Article  CAS  Google Scholar 

  14. Dustin, M.L., Singer, K.H., Tuck, D.T. & Springer, T.A. Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon γ and is mediated by intercellular adhesion molecule 1 (ICAM-1). J. Exp. Med. 167, 1323– 1240 (1988).

    Article  CAS  Google Scholar 

  15. Shimaoka, M. et al. Reversibly locking a protein fold in an active conformation with a disulfide bond: integrin αL I domains with high affinity and antagonist activity in vivo. Proc. Natl. Acad. Sci. USA 98, 6009– 6014 (2001).

    Article  CAS  Google Scholar 

  16. Lu, C. et al. An isolated, surface-expressed I domain of the integrin αLβ2 is sufficient for strong adhesive function when locked in the open conformation with a disulfide bond. Proc. Natl. Acad. Sci. USA 98, 2387– 2392 (2001).

    Article  CAS  Google Scholar 

  17. Potter, T.A., Rajan, T.V., Dick, R.F., 2nd & Bluestone, J.A. Substitution at residue 227 of H-2 class I molecules abrogates recognition by CD8-dependent, but not CD8-independent, cytotoxic T lymphocytes. Nature 337, 73– 75 (1989).

    Article  CAS  Google Scholar 

  18. Purbhoo, M.A. et al. The human CD8 coreceptor effects cytotoxic T cell activation and antigen sensitivity primarily by mediating complete phosphorylation of the T cell receptor ζ chain. J. Biol. Chem. 276, 32786– 32792 (2001).

    Article  CAS  Google Scholar 

  19. Wülfing, C. et al. Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat. Immunol. 3, 42– 47 (2002).

    Article  Google Scholar 

  20. van der Merwe, P.A. Do T cell receptors do it alone? Nat. Immunol. 3, 1122– 1123 (2002).

    Article  CAS  Google Scholar 

  21. Potter, T.A., Grebe, K., Freiberg, B. & Kupfer, A. Formation of supramolecular activation clusters on fresh ex vivo CD8+ T cells after engagement of the T cell antigen receptor and CD8 by antigen-presenting cells. Proc. Natl. Acad. Sci. USA 98, 12624– 12629 (2001).

    Article  CAS  Google Scholar 

  22. Krummel, M.F., Sjaastad, M.D., Wülfing, C. & Davis, M.M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289, 1349– 1352 (2000).

    Article  CAS  Google Scholar 

  23. Wülfing, C. & Davis, M.M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266– 2269 (1998).

    Article  Google Scholar 

  24. Princiotta, M.F. et al. Quantitating protein synthesis, degradation, and endogenous antigen processing. Immunity 18, 343– 354 (2003).

    Article  CAS  Google Scholar 

  25. Yewdell, J.W. Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. Trends Cell Biol. 11, 294– 297 (2001).

    Article  CAS  Google Scholar 

  26. Alam, S.M. et al. Qualitative and quantitative differences in T cell receptor binding of agonist and antagonist ligands. Immunity 10, 227– 237 (1999).

    Article  CAS  Google Scholar 

  27. Degano, M. et al. A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity 12, 251– 261 (2000).

    Article  CAS  Google Scholar 

  28. Stefanova, I., Dorfman, J.R. & Germain, R.N. Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420, 429– 434 (2002).

    Article  CAS  Google Scholar 

  29. Ernst, B., Lee, D.S., Chang, J.M., Sprent, J. & Surh, C.D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173– 181 (1999).

    Article  CAS  Google Scholar 

  30. Kojima, H., Toda, M. & Sitkovsky, M.V. Comparison of Fas- versus perforin-mediated pathways of cytotoxicity in TCR- and Thy-1-activated murine T cells. Int. Immunol. 12, 365– 374 (2000).

    Article  CAS  Google Scholar 

  31. Valitutti, S., Muller, S., Dessing, M. & Lanzavecchia, A. Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy. J. Exp. Med. 183, 1917– 1921 (1996).

    Article  CAS  Google Scholar 

  32. Huppa, J.B., Gleimer, M., Sumen, C. & Davis, M.M. Continuous T cell receptor signaling required for synapse maintenance and full effector potential. Nat. Immunol. 4, 749– 755 (2003).

    Article  CAS  Google Scholar 

  33. Huang, J.F. et al. TCR-mediated internalization of peptide-MHC complexes acquired by T cells. Science 286, 952– 954 (1999).

    Article  CAS  Google Scholar 

  34. Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751– 761 (2001).

    Article  CAS  Google Scholar 

  35. Pear, W.S., Nolan, G.P., Scott, M.L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392– 8396 (1993).

    Article  CAS  Google Scholar 

  36. Wülfing, C., Sjaastad, M.D. & Davis, M.M. Visualizing the dynamics of T cell activation: intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. Proc. Natl. Acad. Sci. USA 95, 6302– 6307 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Chen and H. Eisen for the 2C cytotoxic T cell clone and M.S. Kuhns for providing the pMSCV-Z4 retroviral vector. Supported by the National Institutes of Health (M.M.D.), Howard Hughes Medical Institute (M.A.P.), Cancer Research Fund of the Damon Runyon-Walter Winchell Foundation Fellowship (D.J.I.) and Cancer Research Institute (J.B.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M Davis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purbhoo, M., Irvine, D., Huppa, J. et al. T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol 5, 524–530 (2004). https://doi.org/10.1038/ni1058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1058

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing