Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA

Abstract

The human gut microflora is important in regulating host inflammatory responses and in maintaining immune homeostasis. The cellular and molecular bases of these actions are unknown. Here we describe a unique anti-inflammatory mechanism, activated by nonpathogenic bacteria, that selectively antagonizes transcription factor NF-κB. Bacteroides thetaiotaomicron targets transcriptionally active NF-κB subunit RelA, enhancing its nuclear export through a mechanism independent of nuclear export receptor Crm-1. Peroxisome proliferator activated receptor-γ (PPAR-γ), in complex with nuclear RelA, also undergoes nucleocytoplasmic redistribution in response to B. thetaiotaomicron. A decrease in PPAR-γ abolishes both the nuclear export of RelA and the anti-inflammatory activity of B. thetaiotaomicron. This PPAR-γ-dependent anti-inflammatory mechanism defines new cellular targets for therapeutic drug design and interventions for the treatment of chronic inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: B. thetaiotaomicron specifically attenuates inflammatory responses in Caco-2 cells and in vivo.
Figure 2: B. thetaiotaomicron attenuates inflammation by enhancing nuclear export of NF-κB RelA protein in Caco-2 cells.
Figure 3: The nuclear export of RelA induced by B. thetaioatoamicron is independent of the Crm-1 pathway.
Figure 4: B. thetaiotaomicron induces cellular shuttling of PPAR-γ in Caco-2 cells.
Figure 5: PPAR-γ, but not the dominant negative PPAR-γ, interacts with active RelA and facilitates its nuclear export.
Figure 6: RNA interference of PPAR-γ.
Figure 7: PPAR-γ RNAi abolishes the nuclear export of RelA and the transcriptional inhibition of IL-8 in Caco-2 cells treated with S. enteritidis and B. thetaiotaomicron.

Similar content being viewed by others

References

  1. Sartor, R.B. The influence of normal microbial flora on the development of chronic inflammation. Res. Immunol. 148, 567–576 (1997).

    Article  CAS  Google Scholar 

  2. Rembacken, B.J. et al. Non-pathogenic E. coli versus mesalazine for the treament of ulcerative colitis: a randomised trial. Lancet 354, 635–639 (1999)

    Article  CAS  Google Scholar 

  3. Kuhn, R., Lohler, J., Rennick, D., Rajewsky, K. & Muller, W. Interleukin-10 deficient mice develop chronic enterocolitis. Cell 75, 263–274 (1993).

    Article  CAS  Google Scholar 

  4. Powrie, F., Correa-Oliveira, R., Mauze, S. & Coffman, R.L. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic T-cell immunity. J. Exp. Med. 179, 589–600 (1994).

    Article  CAS  Google Scholar 

  5. Campieri, M. & Gionchetti, P. Probiotics in inflammatory bowel disease: new insight to pathogenesis or possible therapeutic alternative. Gastroenterol. 116, 1246–1249 (1999).

    Article  CAS  Google Scholar 

  6. Marteau, P.R., de Vrese, M., Cellier, C.J. & Schrezenmeir, J. Protection from gastrointestinal diseases with the use of probiotics. Am. J. Clin. Nutr. 73, 430S–436S (2001).

    Article  CAS  Google Scholar 

  7. Cario, E. et al. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J. Immunol. 164, 966–972 (2000).

    Article  CAS  Google Scholar 

  8. Cong, Y., Weaver, C.T., Lazenby, A. & Elson, C.O. Bacterial-reactive T regulatory cells inhibit pathogenic immune responses to the enteric flora. J. Immunol. 169, 6112–6119 (2002).

    Article  CAS  Google Scholar 

  9. Neish, A.S. et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination. Science 289, 1560–1563 (2000).

    Article  CAS  Google Scholar 

  10. Kelly, D. & Conway, S. Genomics at work: the global gene response to enteric bacteria. Gut 49, 612–613 (2001).

    Article  CAS  Google Scholar 

  11. McCormick, B.A., Colgan, S.P., Delp-Archer, C., Miller, S.I. & Madara, J.L. Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J. Cell Biol. 123, 895–907 (1993).

    Article  CAS  Google Scholar 

  12. Hang, L. et al. Macrophage inflammatory protein-2 is required for neutrophil passage across the epithelial barrier of the infected urinary tract. J. Immunol. 162, 3037–3044 (1999).

    CAS  PubMed  Google Scholar 

  13. Ghosh, S., May, M.J. & Kopp, E.B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    CAS  Google Scholar 

  14. May, M.J. & Ghosh, S. Signal transduction through NF-κB. Immunol. Today 19, 80–88 (1998).

    Article  CAS  Google Scholar 

  15. Schesser, K. et al. The YopJ locus is required for Yersinia-mediated inhibition of NF-κB activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Mol. Microbiol. 28, 1067–1079 (1998).

    Article  CAS  Google Scholar 

  16. Cheng, Q. et al. NF-κB subunit-specific regulation of the IκBα promoter. J. Biol. Chem. 269, 13551–13557 (1994).

    CAS  PubMed  Google Scholar 

  17. Chiao, P.J., Miyamoto, S. & Verma, I.M. Autoregulation of IκBα activity. Proc. Natl. Acad. Sci. USA 91, 28–32 (1994).

    Article  CAS  Google Scholar 

  18. Haller, D. et al. TGFβ-1 inhibits non-pathogenic Gram negative bacteria-induced NF-κB recruitment to the IL-6 gene promoter in intestinal epithelial cells through modulation of histone acetylation. J. Biol. Chem. 278, 23851–23860 (2003).

    Article  CAS  Google Scholar 

  19. Chen, L-f., Fischle, W., Verdin, E. & Greene, W.C. Duration of NF-κB action regulated by reversible acetylation. Science 293, 1653–1657 (2001).

    Article  CAS  Google Scholar 

  20. Huang, T.T., Kudo, N., Yoshida, M. & Miyamoto, S. A nuclear export signal in the N-terminal regulatory domain of IκBα controls cytoplasmic localisation of inactive NF-κB/IκBα complexes. Proc. Natl. Acad. Sci. USA 97, 1014–1019 (2000).

    Article  CAS  Google Scholar 

  21. Kudo, H. et al. Leptomycin B inactivates CRM1/exportin 1 by covalent modification at a cysteine residue in the central conserved region. Proc. Natl. Acad. Sci. USA 96, 9112–9117 (1999).

    Article  CAS  Google Scholar 

  22. Su, C.G. et al. A novel therapy for colitis utilizing PPAR-γ ligands to inhibit the epithelial inflammatory response. J. Clin. Invest. 104, 383–389 (1999).

    Article  CAS  Google Scholar 

  23. Nakajima, A. et al. Endogenous PPARγ mediates anti-inflammatory activity in murine ischemia-reperfusion injury. Gastroenterol. 120, 460–469 (2001).

    Article  CAS  Google Scholar 

  24. Wang, N. et al. Constitutive activation of peroxisome proliferator-activated receptor-γ suppresses pro-inflammatory adhesion molecules in human vascular endothelial cells. J. Biol. Chem. 277, 34176–34181 (2002).

    Article  CAS  Google Scholar 

  25. Katayama, K. et al. A novel PPARγ gene therapy to control inflammation associated with inflammatory bowel disease in a murine model. Gastroenterol. 124, 1315–1324 (2003).

    Article  CAS  Google Scholar 

  26. Chawla, K. et al. PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat. Med. 7, 48–52 (2001).

    Article  CAS  Google Scholar 

  27. Rossi, A. et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature 403, 103–108 (2000).

    Article  CAS  Google Scholar 

  28. Straus, D.S. et al. 15-Deoxy-Δ12,14-prostaglandin J2 inhibits multiple steps in the NF-κB signaling pathway. PNAS, 97, 4844–4849 (2000).

    Article  CAS  Google Scholar 

  29. Bunn, C.F. et al. Nucleocytoplasmic shuttling of the thyroid hormone receptor α. Mol. Endocrinol. 15, 512–533 (2001).

    CAS  PubMed  Google Scholar 

  30. Ricote, M., Huang, J.T., Welch, J.S. & Glass, C.K. The peroxisome proliferator-activated receptorγ (PPARγ) as a regulator of monocyte/macrophage function. J. Leukoc. Biol. 66, 733–739 (1999).

    Article  CAS  Google Scholar 

  31. Chung, S.W. et al. Oxidized low density lipoprotein inhibits interleukin-12 production in lipopolysaccharide-activated mouse macrophages via direct interactions between peroxisome proliferator-activated receptor-γ and nuclear factor-κB. J. Biol. Chem. 275, 32681–32687 (2000).

    Article  CAS  Google Scholar 

  32. Gurnell, M. et al. A dominant-negative peroxisome proliferator-activated receptor γ (PPARγ) mutant is a constitutive repressor and inhibits PPARγ-mediated adipogenesis. J. Biol. Chem. 275, 5754–5759 (2000).

    Article  CAS  Google Scholar 

  33. Suzawa et al. Cytokines suppress adipogenesis and PPARγ function through the TAK1/TAB1/NIK cascade. Nature Cell Biol. 5, 224–230 (2003).

    Article  CAS  Google Scholar 

  34. Schmid, J.A. et al. Dynamics of NF-κB and IκBα studied with green fluorescent protein (GFP) fusion proteins. Investigation of GFP-p65 binding to DNA by fluorescence resonance energy transfer. J. Biol. Chem. 275, 17035–17042 (2000).

    Article  CAS  Google Scholar 

  35. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109, S81–S96 (2002).

    Article  CAS  Google Scholar 

  36. Tam, W.F. & Sen, R. IκB family members function by different mechanisms. J. Biol. Chem. 276, 7701–7704 (2001).

    Article  CAS  Google Scholar 

  37. Elbashir, S.M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  38. Sui, G. et al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 5515–5520 (2002).

    Article  CAS  Google Scholar 

  39. Gewirtz, A.T., Navas, T.A., Lyons, S., Godowski, P.J. & Madara, J.L. Bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J. Immunol. 167, 1882–1885 (2001).

    Article  CAS  Google Scholar 

  40. De Winter, H. et al. Regulation of mucosal immune responses by interleukin 10 produced by intestinal epithelial cells in mice. Gastroenterol. 122, 1829–1841 (2002).

    Article  CAS  Google Scholar 

  41. Di Leo, V., Yang, P.C., Berin, M.C. & Perdue, M.H. Factors regulating the effect of IL-4 on intestinal epithelial barrier function. Int. Arch. Allergy Immunol. 129, 219–227 (2002).

    Article  CAS  Google Scholar 

  42. Xu, J. et al. A genomic view of the human-Bacteroides thetaiotaomicron symbosis. Science 299, 2074–2076 (2003).

    Article  CAS  Google Scholar 

  43. Parkos, C.A., Delp, C., Arnaout, M.A. & Madara, J.L. Neutrophil migration across a cultured intestinal epithelium. Dependence on a CD11b/CD18-mediated event and enhanced efficiency in physiological direction. J. Clin. Invest. 88, 1605–1612 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E.T. Logan, K.E Garden, D.J. Fraser-Pitt, D.L. Wilson and J.C. Martin for technical support. We also thank V.K. Chatterjee (Addenbrooke's Hospital, Cambridge, UK) and J.A. Schmid (University of Vienna, Austria) for providing the PPAR-γ and YFP-RelA clones for this work. Supported by SEERAD (Scottish Executive for Environmental and Rural Affairs Department).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Kelly.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, D., Campbell, J., King, T. et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. Nat Immunol 5, 104–112 (2004). https://doi.org/10.1038/ni1018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1018

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing