Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The burgeoning family of unconventional T cells

A Corrigendum to this article was published on 22 March 2016

A Corrigendum to this article was published on 19 January 2016

This article has been updated

Abstract

While most studies of T lymphocytes have focused on T cells reactive to complexes of peptide and major histocompatibility complex (MHC) proteins, many other types of T cells do not fit this paradigm. These include CD1-restricted T cells, MR1-restricted mucosal associated invariant T cells (MAIT cells), MHC class Ib–reactive T cells, and γδ T cells. Collectively, these T cells are considered 'unconventional', in part because they can recognize lipids, small-molecule metabolites and specially modified peptides. Unlike MHC-reactive T cells, these apparently disparate T cell types generally show simplified patterns of T cell antigen receptor (TCR) expression, rapid effector responses and 'public' antigen specificities. Here we review evidence showing that unconventional T cells are an abundant component of the human immune system and discuss the immunotherapeutic potential of these cells and their antigenic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of unconventional and MHC-restricted T cell responses.
Figure 2: Unconventional αβ T cell populations.
Figure 3: Populations of γδ T cells.
Figure 4: Frequency of some antigen-specific T cell types.
Figure 5: Antigens detected by unconventional αβ T cells.

Similar content being viewed by others

Change history

  • 13 November 2015

    In the version of this article initially published, the vertical axes of Figure 4 were labeled incorrectly as "(per 1 × 105 T cells)." The correct label is "(per 1 × 106 T cells)." These errors have been corrected for the PDF and HTML versions of this article.

References

  1. Lieber, M.R. Site-specific recombination in the immune system. FASEB J. 5, 2934–2944 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Arstila, T.P. et al. A direct estimate of the human alphabeta T cell receptor diversity. Science 286, 958–961 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Jenkins, M.K. & Moon, J.J. The role of naive T cell precursor frequency and recruitment in dictating immune response magnitude. J. Immunol. 188, 4135–4140 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Calabi, F., Jarvis, J.M., Martin, L. & Milstein, C. Two classes of CD1 genes. Eur. J. Immunol. 19, 285–292 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Kasmar, A., Van Rhijn, I. & Moody, D.B. The evolved functions of CD1 during infection. Curr. Opin. Immunol. 21, 397–403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dougan, S.K., Kaser, A. & Blumberg, R.S. CD1 expression on antigen-presenting cells. Curr. Top. Microbiol. Immunol. 314, 113–141 (2007).

    CAS  PubMed  Google Scholar 

  7. Van Rhijn, I., Godfrey, D., Rossjohn, J. & Moody, D.B. Lipid and small-molecule display by CD1 and MR1. Nat. Rev. Immunol. 15, 643–654 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Godfrey, D.I., MacDonald, H.R., Kronenberg, M., Smyth, M.J. & Van Kaer, L. NKT cells: what's in a name? Nat. Rev. Immunol. 4, 231–237 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Rossjohn, J., Pellicci, D.G., Patel, O., Gapin, L. & Godfrey, D.I. Recognition of CD1d-restricted antigens by natural killer T cells. Nat. Rev. Immunol. 12, 845–857 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rhost, S., Sedimbi, S., Kadri, N. & Cardell, S.L. Immunomodulatory type II natural killer T lymphocytes in health and disease. Scand. J. Immunol. 76, 246–255 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Kawano, T. et al. Cd1d-restricted and TCR-mediated Activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Cerundolo, V., Silk, J.D., Masri, S.H. & Salio, M. Harnessing invariant NKT cells in vaccination strategies. Nat. Rev. Immunol. 9, 28–38 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Fujii, S.I. et al. NKT cells as an ideal anti-tumor immunotherapeutic. Front. Immunology 4, 409 (2013).

    Article  CAS  Google Scholar 

  14. Hammond, K.J.L. et al. CD1d-restricted NKT cells: An interstrain comparison. J. Immunol. 167, 1164–1173 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Chan, A.C. et al. Ex-vivo analysis of human natural killer T cells demonstrates heterogeneity between tissues and within established CD4+ and CD4 subsets. Clin. Exp. Immunol. 172, 129–137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pei, B., Vela, J.L., Zajonc, D. & Kronenberg, M. Interplay between carbohydrate and lipid in recognition of glycolipid antigens by natural killer T cells. Ann. NY Acad. Sci. 1253, 68–79 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Speak, A.O. et al. Implications for invariant natural killer T cell ligands due to the restricted presence of isoglobotrihexosylceramide in mammals. Proc. Natl. Acad. Sci. USA 104, 5971–5976 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Brennan, P.J. et al. Activation of iNKT cells by a distinct constituent of the endogenous glucosylceramide fraction. Proc. Natl. Acad. Sci. USA 111, 13433–13438 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kain, L. et al. The identification of the endogenous ligands of natural killer T cells reveals the presence of mammalian alpha-linked glycosylceramides. Immunity 41, 543–554 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kain, L. et al. Endogenous ligands of natural killer T cells are α-linked glycosylceramides. Mol. Immunol. doi:10.1016/j.molimm.2015.06.009 (30 June 2015).

  22. Wieland Brown, L.C. et al. Production of α-galactosylceramide by a prominent member of the human gut microbiota. PLoS Biol. 11, e1001610 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Crowe, N.Y. et al. Glycolipid antigen drives rapid expansion and sustained cytokine production by NK T cells. J. Immunol. 171, 4020–4027 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Wilson, M.T. et al. The response of natural killer T cells to glycolipid antigens is characterized by surface receptor down-modulation and expansion. Proc. Natl. Acad. Sci. USA 100, 10913–10918 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Coquet, J.M. et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4NK1.1 NKT cell population. Proc. Natl. Acad. Sci. USA 105, 11287–11292 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Wingender, G., Krebs, P., Beutler, B. & Kronenberg, M. Antigen-specific cytotoxicity by invariant NKT cells in vivo is CD95/CD178-dependent and is correlated with antigenic potency. J. Immunol. 185, 2721–2729 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Vincent, M.S. et al. CD1-dependent dendritic cell instruction. Nat. Immunol. 3, 1163–1168 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Fujii, S., Liu, K., Smith, C., Bonito, A.J. & Steinman, R.M. The linkage of innate to adaptive immunity via maturing dendritic cells in vivo requires CD40 ligation in addition to antigen presentation and CD80/86 costimulation. J. Exp. Med. 199, 1607–1618 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Eberl, G. & MacDonald, H.R. Selective induction of NK cell proliferation and cytotoxicity by activated NKT cells. Eur. J. Immunol. 30, 985–992 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Galli, G. et al. CD1d-restricted help to B cells by human invariant natural killer T lymphocytes. J. Exp. Med. 197, 1051–1057 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Salio, M., Silk, J.D., Yvonne Jones, E. & Cerundolo, V. Biology of CD1- and MR1-restricted T cells. Annu. Rev. Immunol. 32, 323–366 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Wu, L. & Van Kaer, L. Natural killer T cells in health and disease. Front. Biosci. 3, 236–251 (2011).

    Google Scholar 

  33. De Santo, C. et al. Invariant NKT cells reduce the immunosuppressive activity of influenza A virus-induced myeloid-derived suppressor cells in mice and humans. J. Clin. Invest. 118, 4036–4048 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Guillonneau, C. et al. Combined NKT cell activation and influenza virus vaccination boosts memory CTL generation and protective immunity. Proc. Natl. Acad. Sci. USA 106, 3330–3335 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chang, P.P. et al. Identification of Bcl-6-dependent follicular helper NKT cells that provide cognate help for B cell responses. Nat. Immunol. 13, 35–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Lee, Y.J., Holzapfel, K.L., Zhu, J., Jameson, S.C. & Hogquist, K.A. Steady-state production of IL-4 modulates immunity in mouse strains and is determined by lineage diversity of iNKT cells. Nat. Immunol. 14, 1146–1154 (2013).

    CAS  PubMed  Google Scholar 

  37. Michel, M.L. et al. Identification of an IL-17-producing NK1.1neg iNKT cell population involved in airway neutrophilia. J. Exp. Med. 204, 995–1001 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sag, D., Krause, P., Hedrick, C.C., Kronenberg, M. & Wingender, G. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J. Clin. Invest. 124, 3725–3740 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. King, I.L. et al. Invariant natural killer T cells direct B cell responses to cognate lipid antigen in an IL-21-dependent manner. Nat. Immunol. 13, 44–50 (2012).

    Article  CAS  Google Scholar 

  40. Yamasaki, K. et al. Induction of NKT cell-specific immune responses in cancer tissues after NKT cell-targeted adoptive immunotherapy. Clin. Immunol. 138, 255–265 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Schmieg, J., Yang, G., Franck, R.W. & Tsuji, M. Superior protection against malaria and melanoma metastases by a C-glycoside analogue of the natural killer T cell ligand α-galactosylceramide. J. Exp. Med. 198, 1631–1641 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Bedel, R. et al. Lower TCR repertoire diversity in Traj18-deficient mice. Nat. Immunol. 13, 705–706 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chandra, S. et al. A new mouse strain for the analysis of invariant NKT cell function. Nat. Immunol. 16, 799–800 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jahng, A. et al. Prevention of autoimmunity by targeting a distinct, noninvariant CD1d-reactive T cell population reactive to sulfatide. J. Exp. Med. 199, 947–957 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Terabe, M. et al. A nonclassical non-Vα14Jα18 CD1d-restricted (type II) NKT cell is sufficient for down-regulation of tumor immunosurveillance. J. Exp. Med. 202, 1627–1633 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ambrosino, E. et al. Cross-regulation between type I and type II NKT cells in regulating tumor immunity: a new immunoregulatory axis. J. Immunol. 179, 5126–5136 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Robertson, F.C., Berzofsky, J.A. & Terabe, M. NKT cell networks in the regulation of tumor immunity. Front. Immunology 5, 543 (2014).

    Article  CAS  Google Scholar 

  49. Chang, D.H. et al. Inflammation-associated lysophospholipids as ligands for CD1d-restricted T cells in human cancer. Blood 112, 1308–1316 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tatituri, R.V. et al. Recognition of microbial and mammalian phospholipid antigens by NKT cells with diverse TCRs. Proc. Natl. Acad. Sci. USA 110, 1827–1832 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zeissig, S. et al. Hepatitis B virus-induced lipid alterations contribute to natural killer T cell-dependent protective immunity. Nat. Med. 18, 1060–1068 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Van Rhijn, I. et al. CD1d-restricted T cell activation by nonlipidic small molecules. Proc. Natl. Acad. Sci. USA 101, 13578–13583 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Exley, M.A. et al. Cutting edge: A major fraction of human bone marrow lymphocytes are Th2-like CD1d-reactive T cells that can suppress mixed lymphocyte responses. J. Immunol. 167, 5531–5534 (2001).

    Article  CAS  PubMed  Google Scholar 

  54. de Lalla, C. et al. High-frequency and adaptive-like dynamics of human CD1 self-reactive T cells. Eur. J. Immunol. 41, 602–610 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Beckman, E.M. et al. Recognition of a lipid antigen by CD1-restricted ab+ T cells. Nature 372, 691–694 (1994).

    Article  CAS  PubMed  Google Scholar 

  56. Van Rhijn, I. & Moody, D. Donor unrestricted T cells: a shared human T cell response. J. Immunol. 195, 1927–1932 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Kasmar, A.G. et al. Cutting edge: CD1a tetramers and dextramers identify human lipopeptide-specific T cells ex vivo. J. Immunol. 191, 4499–4503 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Kasmar, A.G. et al. CD1b tetramers bind αβ T cell receptors to identify a mycobacterial glycolipid-reactive T cell repertoire in humans. J. Exp. Med. 208, 1741–1747 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Ly, D. et al. CD1c tetramers detect ex vivo T cell responses to processed phosphomycoketide antigens. J. Exp. Med. 210, 729–741 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Van Rhijn, I. et al. A conserved human T cell population targets mycobacterial antigens presented by CD1b. Nat. Immunol. 14, 706–713 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Van Rhijn, I. et al. TCR bias and affinity define two compartments of the CD1b-glycolipid-specific T cell repertoire. J. Immunol. 192, 4054–4060 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Huang, S. et al. Discovery of deoxyceramides and diacylglycerols as CD1b scaffold lipids among diverse groove-blocking lipids of the human CD1 system. Proc. Natl. Acad. Sci. USA 108, 19335–19340 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  63. van Schaik, B. et al. Discovery of invariant T cells by next-generation sequencing of the human TCR α-chain repertoire. J. Immunol. 193, 5338–5344 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. de Jong, A. et al. CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire. Nat. Immunol. 11, 1102–1109 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. de Jong, A. et al. CD1a-autoreactive T cells recognize natural skin oils that function as headless antigens. Nat. Immunol. 15, 177–185 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Bourgeois, E.A. et al. Bee venom processes human skin lipids for presentation by CD1a. J. Exp. Med. 212, 149–163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Porcelli, S. et al. Recognition of cluster of differentiation 1 antigens by human CD4CD8 cytolytic T lymphocytes. Nature 341, 447–450 (1989).

    Article  CAS  PubMed  Google Scholar 

  68. Lepore, M. et al. A novel self-lipid antigen targets human T cells against CD1c+ leukemias. J. Exp. Med. 211, 1363–1377 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rossjohn, J. et al. T cell antigen receptor recognition of antigen-presenting molecules. Annu. Rev. Immunol. 33, 169–200 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Ussher, J.E., Klenerman, P. & Willberg, C.B. Mucosal-associated invariant T-cells: new players in anti-bacterial immunity. Front. Immunol. 5, 450 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Reantragoon, R. et al. Antigen-loaded MR1 tetramers define T cell receptor heterogeneity in mucosal-associated invariant T cells. J. Exp. Med. 210, 2305–2320 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gold, M.C. et al. MR1-restricted MAIT cells display ligand discrimination and pathogen selectivity through distinct T cell receptor usage. J. Exp. Med. 211, 1601–1610 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lepore, M. et al. Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire. Nat. Commun. 5, 3866 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Rahimpour, A. et al. Identification of phenotypically and functionally heterogeneous mouse mucosal-associated invariant T cells using MR1 tetramers. J. Exp. Med. 212, 1095–1108 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dusseaux, M. et al. Human MAIT cells are xenobiotic-resistant, tissue-targeted, CD161hi IL-17-secreting T cells. Blood 117, 1250–1259 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Le Bourhis, L. et al. Antimicrobial activity of mucosal-associated invariant T cells. Nat. Immunol. 11, 701–708 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Gold, M.C. et al. Human mucosal associated invariant T cells detect bacterially infected cells. PLoS Biol. 8, e1000407 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Corbett, A.J. et al. T-cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509, 361–365 (2014).

    Article  CAS  PubMed  Google Scholar 

  80. Eckle, S.B. et al. A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells. J. Exp. Med. 211, 1585–1600 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Patel, O. et al. Recognition of vitamin B metabolites by mucosal-associated invariant T cells. Nat. Commun. 4, 2142 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Soudais, C. et al. In vitro and in vivo analysis of the Gram-negative bacteria-derived riboflavin precursor derivatives activating mouse MAIT Cells. J. Immunol. 194, 4641–4649 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Meierovics, A., Yankelevich, W.J. & Cowley, S.C. MAIT cells are critical for optimal mucosal immune responses during in vivo pulmonary bacterial infection. Proc. Natl. Acad. Sci. USA 110, E3119–E3128 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Leeansyah, E. et al. Activation, exhaustion, and persistent decline of the antimicrobial MR1-restricted MAIT-cell population in chronic HIV-1 infection. Blood 121, 1124–1135 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Fernandez, C.S. et al. MAIT cells are depleted early but retain functional cytokine expression in HIV infection. Immunol. Cell Biol. 93, 177–188 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Leeansyah, E. et al. Arming of MAIT cell cytolytic antimicrobial activity is induced by IL-7 and defective in HIV-1 infection. PLoS Pathog. 11, e1005072 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ussher, J.E. et al. CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner. Eur. J. Immunol. 44, 195–203 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Croxford, J.L., Miyake, S., Huang, Y.Y., Shimamura, M. & Yamamura, T. Invariant Vα19i T cells regulate autoimmune inflammation. Nat. Immunol. 7, 987–994 (2006).

    Article  CAS  PubMed  Google Scholar 

  90. Serriari, N.E. et al. Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin. Exp. Immunol. 176, 266–274 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Magalhaes, I. et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J. Clin. Invest. 125, 1752–1762 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Teunissen, M.B. et al. The IL-17A-producing CD8 T cell population in psoriatic lesional skin comprises mucosa-associated invariant T cells and conventional T cells. J. Invest. Dermatol. 134, 2898–2907 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Cho, Y.N. et al. Mucosal-associated invariant T cell deficiency in systemic lupus erythematosus. J. Immunol. 193, 3891–3901 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Smith, D.J., Hill, G.R., Bell, S.C. & Reid, D.W. Reduced mucosal associated invariant T-cells are associated with increased disease severity and Pseudomonas aeruginosa infection in cystic fibrosis. PLoS ONE 9, e109891 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chien, Y.H., Meyer, C. & Bonneville, M. gammadelta T cells: first line of defense and beyond. Annu. Rev. Immunol. 32, 121–155 (2014).

    Article  CAS  PubMed  Google Scholar 

  96. Vantourout, P. & Hayday, A. Six-of-the-best: unique contributions of γδ T cells to immunology. Nat. Rev. Immunol. 13, 88–100 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rock, E.P., Sibbald, P.R., Davis, M.M. & Chien, Y.H. CDR3 length in antigen-specific immune receptors. J. Exp. Med. 179, 323–328 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. O'Brien, R.L. & Born, W.K. Dermal γδ T cells—What have we learned? Cell. Immunol. 296, 62–69 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Takagaki, Y., DeCloux, A., Bonneville, M. & Tonegawa, S. Diversity of γδ T-cell receptors on murine intestinal intra-epithelial lymphocytes. Nature 339, 712–714 (1989).

    Article  CAS  PubMed  Google Scholar 

  100. Pereira, P., Lafaille, J.J., Gerber, D. & Tonegawa, S. The T cell receptor repertoire of intestinal intraepithelial γδ T lymphocytes is influenced by genes linked to the major histocompatibility complex and to the T cell receptor loci. Proc. Natl. Acad. Sci. USA 94, 5761–5766 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gerber, D.J. et al. IL4-producing γδ T cells that express a very restricted TCR repertoire are preferentially localized in liver and spleen. J. Immunol. 163, 3076–3082 (1999).

    CAS  PubMed  Google Scholar 

  102. Sim, G.K., Rajaserkar, R., Dessing, M. & Augustin, A. Homing and in situ differentiation of resident pulmonary lymphocytes. Int. Immunol. 6, 1287–1295 (1994).

    Article  CAS  PubMed  Google Scholar 

  103. Itohara, S. et al. Homing of a γδ thymocyte subset with homogeneous T-cell receptors to mucosal epithelia. Nature 343, 754–757 (1990).

    Article  CAS  PubMed  Google Scholar 

  104. O'Brien, R.L. & Born, W.K. γδ T cell subsets: a link between TCR and function? Semin. Immunol. 22, 193–198 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ebert, L.M., Meuter, S. & Moser, B. Homing and function of human skin T cells and NK cells: relevance for tumor surveillance. J. Immunol. 176, 4331–4336 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Toulon, A. et al. A role for human skin-resident T cells in wound healing. J. Exp. Med. 206, 743–750 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Deusch, K. et al. A major fraction of human intraepithelial lymphocytes simultaneously expresses the γδ T cell receptor, the CD8 accessory molecule and preferentially uses the Vδ1 gene segment. Eur. J. Immunol. 21, 1053–1059 (1991).

    Article  CAS  PubMed  Google Scholar 

  108. Karunakaran, M.M., Gobel, T.W., Starick, L., Walter, L. & Herrmann, T. Vγ9 and Vδ2 T cell antigen receptor genes and butyrophilin 3 (BTN3) emerged with placental mammals and are concomitantly preserved in selected species like alpaca (Vicugna pacos). Immunogenetics 66, 243–254 (2014).

    Article  CAS  PubMed  Google Scholar 

  109. Hintz, M. et al. Identification of (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate as a major activator for human γδ T cells in Escherichia coli. FEBS Lett. 509, 317–322 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Gu, S., Nawrocka, W. & Adams, E.J. Sensing of pyrophosphate metabolites by Vγ9Vδ2 T cells. Front. Immunol. 5, 688 (2014).

    PubMed  Google Scholar 

  111. Bukowski, J.F., Morita, C.T. & Brenner, M.B. Human γδ T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 11, 57–65 (1999).

    Article  CAS  PubMed  Google Scholar 

  112. Tanaka, Y. et al. Natural and synthetic non-peptide antigens recognized by human γδ T cells. Nature 375, 155–158 (1995).

    Article  CAS  PubMed  Google Scholar 

  113. Li, H. et al. Structure of the Vδ domain of a human γδ T-cell antigen receptor. Nature 391, 502–506 (1998).

    Article  CAS  PubMed  Google Scholar 

  114. Allison, T.J., Winter, C.C., Fournie, J.J., Bonneville, M. & Garboczi, D.N. Structure of a human γδ T-cell antigen receptor. Nature 411, 820–824 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Vavassori, S. et al. Butyrophilin 3A1 binds phosphorylated antigens and stimulates human γδ T cells. Nat. Immunol. 14, 908–916 (2013).

    Article  CAS  PubMed  Google Scholar 

  116. Sandstrom, A. et al. The intracellular B30.2 domain of butyrophilin 3A1 binds phosphoantigens to mediate activation of human Vγ9Vδ2 T cells. Immunity 40, 490–500 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rhodes, D.A. et al. Activation of human γδ T cells by cytosolic interactions of BTN3A1 with soluble phosphoantigens and the cytoskeletal adaptor periplakin. J. Immunol. 194, 2390–2398 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Willcox, C.R. et al. Cytomegalovirus and tumor stress surveillance by binding of a human γδ T cell antigen receptor to endothelial protein C receptor. Nat. Immunol. 13, 872–879 (2012).

    Article  CAS  PubMed  Google Scholar 

  119. Spada, F.M. et al. Self-recognition of CD1 by γδ T cells: implications for innate immunity. J. Exp. Med. 191, 937–948 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Uldrich, A.P. et al. CD1d-lipid antigen recognition by the γδ TCR. Nat. Immunol. 14, 1137–1145 (2013).

    Article  CAS  PubMed  Google Scholar 

  121. Bai, L. et al. The majority of CD1d-sulfatide-specific T cells in human blood use a semiinvariant Vδ1 TCR. Eur. J. Immunol. 42, 2505–2510 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Wu, J., Groh, V. & Spies, T. T cell antigen receptor engagement and specificity in the recognition of stress-inducible MHC class I-related chains by human epithelial γδ T cells. J. Immunol. 169, 1236–1240 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Kong, Y. et al. The NKG2D ligand ULBP4 binds to TCRγ9/δ2 and induces cytotoxicity to tumor cells through both TCRγδ and NKG2D. Blood 114, 310–317 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Luoma, A.M. et al. Crystal structure of Vdelta1 T cell receptor in complex with CD1d-sulfatide shows MHC-like recognition of a self-lipid by human γδ T cells. Immunity 39, 1032–1042 (2013).

    Article  CAS  PubMed  Google Scholar 

  125. Agea, E. et al. Human CD1-restricted T cell recognition of lipids from pollens. J. Exp. Med. 202, 295–308 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Russano, A.M. et al. Recognition of pollen-derived phosphatidyl-ethanolamine by human CD1d-restricted γδ T cells. J. Allergy Clin. Immunol. 117, 1178–1184 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Mangan, B.A. et al. Cutting edge: CD1d restriction and th1/th2/th17 cytokine secretion by human Vδ3 T cells. J. Immunol. 191, 30–34 (2013).

    Article  CAS  PubMed  Google Scholar 

  128. Zeng, X. et al. γδ T cells recognize a microbial encoded B cell antigen to initiate a rapid antigen-specific interleukin-17 response. Immunity 37, 524–534 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bruder, J. et al. Target specificity of an autoreactive pathogenic human γδ-T cell receptor in myositis. J. Biol. Chem. 287, 20986–20995 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Rodgers, J.R. & Cook, R.G. MHC class Ib molecules bridge innate and acquired immunity. Nat. Rev. Immunol. 5, 459–471 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Sullivan, L.C., Clements, C.S., Rossjohn, J. & Brooks, A.G. The major histocompatibility complex class Ib molecule HLA-E at the interface between innate and adaptive immunity. Tissue Antigens 72, 415–424 (2008).

    Article  CAS  PubMed  Google Scholar 

  132. Barakonyi, A. et al. Recognition of nonclassical HLA class I antigens by γδ T cells during pregnancy. J. Immunol. 168, 2683–2688 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Cho, H., Choi, H.-J., Xu, H., Felio, K. & Wang, C.-R. Nonconventional CD8+ T cell responses to listeria infection in mice lacking MHC class Ia and H2–M3. J. Immunol. 186, 489–498 (2011).

    Article  CAS  PubMed  Google Scholar 

  134. Caccamo, N. et al. Human CD8 T lymphocytes recognize Mycobacterium tuberculosis antigens presented by HLA-E during active tuberculosis and express type 2 cytokines. Eur. J. Immunol. 45, 1069–1081 (2015).

    Article  CAS  PubMed  Google Scholar 

  135. van Meijgaarden, K.E. et al. Human CD8+ T-cells recognizing peptides from Mycobacterium tuberculosis (Mtb) presented by HLA-E have an unorthodox Th2-like, multifunctional, Mtb inhibitory phenotype and represent a novel human T-cell subset. PLoS Pathog. 11, e1004671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Sullivan, L.C., Hoare, H.L., McCluskey, J., Rossjohn, J. & Brooks, A.G. A structural perspective on MHC class Ib molecules in adaptive immunity. Trends Immunol. 27, 413–420 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Chiu, N.M. et al. The selection of M3-restricted T cells is dependent on M3 expression and presentation of N-formylated peptides in the thymus. J. Exp. Med. 190, 1869–1878 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Swanson, P.A. et al. An MHC class Ib–restricted CD8 T cell response confers antiviral immunity. J. Exp. Med. 205, 1647–1657 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chiang, E.Y. & Stroynowski, I. Protective immunity against disparate tumors is mediated by a nonpolymorphic MHC class I molecule. J. Immunol. 174, 5367–5374 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Hofstetter, A.R. et al. MHC class Ib-restricted CD8 T cells differ in dependence on CD4 T cell Help and CD28 costimulation over the course of mouse polyomavirus infection. J. Immunol. 188, 3071–3079 (2012).

    Article  CAS  PubMed  Google Scholar 

  141. Rohrlich, P.S. et al. Direct recognition by αβ cytolytic T cells of Hfe, a MHC class Ib molecule without antigen-presenting function. Proc. Natl. Acad. Sci. USA 102, 12855–12860 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Crowley, M.P. et al. A population of murine γδ T cells that recognize an inducible MHC class Ib molecule. Science 287, 314–316 (2000).

    Article  CAS  PubMed  Google Scholar 

  143. Crowley, M.P., Reich, Z., Mavaddat, N., Altman, J.D. & Chien, Y. The recognition of the nonclassical major histocompatibility complex (MHC) class I molecule, T10, by the γδ T cell, G8. J. Exp. Med. 185, 1223–1230 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tefit, J.N. et al. Efficacy of ABX196, a new NKT agonist, in prophylactic human vaccination. Vaccine 32, 6138–6145 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gomes, A.Q., Martins, D.S. & Silva-Santos, B. Targeting γδ T lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Cancer Res. 70, 10024–10027 (2010).

    Article  CAS  PubMed  Google Scholar 

  146. Birkinshaw, R.W. et al. αβ T cell antigen receptor recognition of CD1a presenting self lipid ligands. Nat. Immunol. 16, 258–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tefit, J.N., Davies, G. & Serra, V. NKT cell responses to glycolipid activation. Methods Mol. Biol. 626, 149–167 (2010).

    Article  CAS  PubMed  Google Scholar 

  148. Shimizu, K., Kurosawa, Y., Taniguchi, M., Steinman, R.M. & Fujii, S. Cross-presentation of glycolipid from tumor cells loaded with α-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J. Exp. Med. 204, 2641–2653 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Venkataswamy, M.M. et al. Incorporation of NKT cell-activating glycolipids enhances immunogenicity and vaccine efficacy of Mycobacterium bovis bacillus Calmette-Guerin. J. Immunol. 183, 1644–1656 (2009).

    Article  CAS  PubMed  Google Scholar 

  150. Melero, I. et al. Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat. Rev. Cancer 15, 457–472 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Pardoll, D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Dupuy, P. et al. T-cell receptor-γδ bearing lymphocytes in normal and inflammatory human skin. J. Invest. Dermatol. 94, 764–768 (1990).

    Article  CAS  PubMed  Google Scholar 

  153. Felio, K. et al. CD1-restricted adaptive immune responses to Mycobacteria in human group 1 CD1 transgenic mice. J. Exp. Med. 206, 2497–2509 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Lockridge, J.L. et al. Analysis of the CD1 antigen presenting system in humanized SCID mice. PLoS ONE 6, e21701 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Dascher, C.C. et al. Conservation of a CD1 multigene family in the guinea pig. J. Immunol. 163, 5478–5488 (1999).

    CAS  PubMed  Google Scholar 

  156. Kasmar, A.G. et al. CD1b tetramers bind αβ T cell receptors to identify a mycobacterial glycolipid-reactive T cell repertoire in humans. J. Exp. Med. 208, 1741–1747 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ly, D. et al. CD1c tetramers detect ex vivo T cell responses to processed phosphomycoketide antigens. J. Exp. Med. 210, 729–741 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Berzins, S.P., Cochrane, A.D., Pellicci, D.G., Smyth, M.J. & Godfrey, D.I. Limited correlation between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples. Eur. J. Immunol. 35, 1399–1407 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Matsuda, J.L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Sugita and N. LaGruta for discussions. Supported by the National Health and Medical Research Council of Australia (1013667 and 1063587; 1020770 to D.I.G.; and AF50 to J.R.), the Australian Research Council (CE140100011 and LE110100106; and FT140100278 to A.P.U.), Cancer Council Victoria, the Bill and Melinda Gates Foundation Vaccine Accelerator, and the National Institute of Allergy and Infectious Diseases (AI049313, AR048632 and U19111224).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale I Godfrey.

Ethics declarations

Competing interests

D.I.G. is chair of the scientific advisory panel for Avalia Immunotherapies.

Supplementary information

Supplementary Table 1

Characteristics of non-conventional T cells (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godfrey, D., Uldrich, A., McCluskey, J. et al. The burgeoning family of unconventional T cells. Nat Immunol 16, 1114–1123 (2015). https://doi.org/10.1038/ni.3298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3298

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing