Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytokines of the γc family control CD4+ T cell differentiation and function

Abstract

Naive CD4+ T cells undergo massive proliferation and differentiation into at least four distinct helper T cell subsets after recognition of foreign antigen–derived peptides presented by dendritic cells. Each helper T cell subset expresses a distinct set of genes that encode unique transcription factor(s), as well as hallmark cytokines. The cytokine environment created by activated CD4+ T cells, dendritic cells and/or other cell types during the course of differentiation is a major determinant for the helper T cell fate. This Review focuses on the role of cytokines of the common γ-chain (γc) family in the determination of the effector helper T cell phenotype that naive CD4+ T cells adopt after being activated and in the function of these helper T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model for early TH2 differentiation.
Figure 2: A model for the regulation of early TH2 differentiation by TCR signal strength.
Figure 3: A model for early determination of iTreg fate versus TH17 fate controlled by TCR signal strength.
Figure 4: A model for early determination of Teff cell fate versus TFH cell fate controlled by TCR signal strength.

Similar content being viewed by others

References

  1. Bazan, J.F. Structural design and molecular evolution of a cytokine receptor superfamily. Proc. Natl. Acad. Sci. USA 87, 6934–6938 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rochman, Y., Spolski, R. & Leonard, W.J. New insights into the regulation of T cells by γc family cytokines. Nat. Rev. Immunol. 9, 480–490 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, X., Lupardus, P., Laporte, S.L. & Garcia, K.C. Structural biology of shared cytokine receptors. Annu. Rev. Immunol. 27, 29–60 (2009).

    PubMed  PubMed Central  Google Scholar 

  4. Dubois, S., Mariner, J., Waldmann, T.A. & Tagaya, Y. IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity 17, 537–547 (2002).

    CAS  PubMed  Google Scholar 

  5. Rautajoki, K.J., Kylaniemi, M.K., Raghav, S.K., Rao, K. & Lahesmaa, R. An insight into molecular mechanisms of human T helper cell differentiation. Ann. Med. 40, 322–335 (2008).

    CAS  PubMed  Google Scholar 

  6. Fry, T.J. & Mackall, C.L. The many faces of IL-7: from lymphopoiesis to peripheral T cell maintenance. J. Immunol. 174, 6571–6576 (2005).

    CAS  PubMed  Google Scholar 

  7. Singer, A., Adoro, S. & Park, J.H. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat. Rev. Immunol. 8, 788–801 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Vicente, R. et al. Molecular and cellular basis of T cell lineage commitment. Semin. Immunol. 22, 270–275 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu, J., Yamane, H. & Paul, W.E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi, M., Lin, T.H., Appell, K.C. & Berg, L.J. Janus-kinase-3-dependent signals induce chromatin remodeling at the Ifng locus during T helper 1 cell differentiation. Immunity 28, 763–773 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chang, J.T., Segal, B.M. & Shevach, E.M. Role of costimulation in the induction of the IL-12/IL-12 receptor pathway and the development of autoimmunity. J. Immunol. 164, 100–106 (2000).

    CAS  PubMed  Google Scholar 

  12. Liao, W., Lin, J.X., Wang, L., Li, P. & Leonard, W.J. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat. Immunol. 12, 551–559 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng, W. & Flavell, R.A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    CAS  PubMed  Google Scholar 

  14. Le Gros, G., Ben-Sasson, S.Z., Seder, R., Finkelman, F.D. & Paul, W.E. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J. Exp. Med. 172, 921–929 (1990).

    CAS  PubMed  Google Scholar 

  15. Cote-Sierra, J. et al. Interleukin 2 plays a central role in Th2 differentiation. Proc. Natl. Acad. Sci. USA 101, 3880–3885 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu, J., Cote-Sierra, J., Guo, L. & Paul, W.E. Stat5 activation plays a critical role in Th2 differentiation. Immunity 19, 739–748 (2003).

    CAS  PubMed  Google Scholar 

  17. Liao, W. et al. Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor α-chain expression. Nat. Immunol. 11, 1288–1296 (2008).

    Google Scholar 

  18. Yamane, H. & Paul, W.E. Memory CD4+ T cells: fate determination, positive feedback and plasticity. Cell Mol. Life Sci. 69, 1577–1583 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Perrigoue, J.G. et al. MHC class II-dependent basophil-CD4+ T cell interactions promote TH2 cytokine-dependent immunity. Nat. Immunol. 10, 697–705 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yoshimoto, T. et al. Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat. Immunol. 10, 706–712 (2009).

    CAS  PubMed  Google Scholar 

  21. Sokol, C.L. et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat. Immunol. 10, 713–720 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hammad, H. et al. Inflammatory dendritic cells–not basophils–are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J. Exp. Med. 207, 2097–2111 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sullivan, B.M. et al. Genetic analysis of basophil function in vivo. Nat. Immunol. 12, 527–535 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Parish, C.R. & Liew, F.Y. Immune response to chemically modified flagellin. 3. Enhanced cell-mediated immunity during high and low zone antibody tolerance to flagellin. J. Exp. Med. 135, 298–311 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Constant, S.L. & Bottomly, K. Induction of Th1 and Th2 CD4+ T cell responses: the alternative approaches. Annu. Rev. Immunol. 15, 297–322 (1997).

    CAS  PubMed  Google Scholar 

  26. Aguado, E. et al. Induction of T helper type 2 immunity by a point mutation in the LAT adaptor. Science 296, 2036–2040 (2002).

    CAS  PubMed  Google Scholar 

  27. Sommers, C.L. et al. A LAT mutation that inhibits T cell development yet induces lymphoproliferation. Science 296, 2040–2043 (2002).

    CAS  PubMed  Google Scholar 

  28. Altin, J.A. et al. Decreased T-cell receptor signaling through CARD11 differentially compromises forkhead box protein 3-positive regulatory versus TH2 effector cells to cause allergy. J. Allergy Clin. Immunol. 127, 1277–1285 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yamane, H., Zhu, J. & Paul, W.E. Independent roles for IL-2 and GATA-3 in stimulating naive CD4+ T cells to generate a Th2-inducing cytokine environment. J. Exp. Med. 202, 793–804 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Das, J. et al. A critical role for NF-κB in Gata3 expression and TH2 differentiation in allergic airway inflammation. Nat. Immunol. 2, 45–50 (2001).

    CAS  PubMed  Google Scholar 

  31. Corn, R.A., Hunter, C., Liou, H.C., Siebenlist, U. & Boothby, M.R. Opposing roles for RelB and Bcl-3 in regulation of T-box expressed in T cells, GATA-3, and Th effector differentiation. J. Immunol. 175, 2102–2010 (2005).

    CAS  PubMed  Google Scholar 

  32. Amsen, D. et al. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27, 89–99 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Fang, T.C. et al. Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity 27, 100–110 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu, Q. et al. T cell factor 1 initiates the T helper type 2 fate by inducing the transcription factor GATA-3 and repressing interferon-γ. Nat. Immunol. 10, 992–999 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schulze-Luehrmann, J. & Ghosh, S. Antigen-receptor signaling to nuclear factor κB. Immunity 25, 701–715 (2006).

    CAS  PubMed  Google Scholar 

  36. Ioannidis, V., Beermann, F., Clevers, H. & Held, W. The β-catenin-TCF-1 pathway ensures CD4+CD8+ thymocyte survival. Nat. Immunol. 2, 691–697 (2001).

    CAS  PubMed  Google Scholar 

  37. Ong, C.T., Sedy, J.R., Murphy, K.M. & Kopan, R. Notch and presenilin regulate cellular expansion and cytokine secretion but cannot instruct Th1/Th2 fate acquisition. PLoS ONE 3, e2823 (2008).

    PubMed  PubMed Central  Google Scholar 

  38. Everts, B. et al. Omega-1, a glycoprotein secreted by Schistosoma mansoni eggs, drives Th2 responses. J. Exp. Med. 206, 1673–1680 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Steinfelder, S. et al. The major component in schistosome eggs responsible for conditioning dendritic cells for Th2 polarization is a T2 ribonuclease (omega-1). J. Exp. Med. 206, 1681–1690 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Swain, S.L., Weinberg, A.D., English, M. & Huston, G. IL-4 directs the development of Th2-like helper effectors. J. Immunol. 145, 3796–3806 (1990).

    CAS  PubMed  Google Scholar 

  41. van Panhuys, N. et al. In vivo studies fail to reveal a role for IL-4 or STAT6 signaling in Th2 lymphocyte differentiation. Proc. Natl. Acad. Sci. USA 105, 12423–12428 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Paul, W.E. & Zhu, J. How are TH2-type immune responses initiated and amplified? Nat. Rev. Immunol. 10, 225–235 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, J. et al. Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses. Nat. Immunol. 5, 1157–1165 (2004).

    CAS  PubMed  Google Scholar 

  44. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  45. Hinterberger, M. et al. Autonomous role of medullary thymic epithelial cells in central CD4+ T cell tolerance. Nat. Immunol. 6, 512–519 (2010).

    Google Scholar 

  46. Lio, C.W. & Hsieh, C.S. A two-step process for thymic regulatory T cell development. Immunity 28, 100–111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Burchill, M.A. et al. Linked T cell receptor and cytokine signaling govern the development of the regulatory T cell repertoire. Immunity 28, 112–121 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Fontenot, J.D., Rasmussen, J.P., Gavin, M.A. & Rudensky, A.Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    CAS  PubMed  Google Scholar 

  49. Yu, A., Zhu, L., Altman, N.H. & Malek, T.R. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity 30, 204–217 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Burchill, M.A., Yang, J., Vogtenhuber, C., Blazar, B.R. & Farrar, M.A. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J. Immunol. 178, 280–290 (2007).

    CAS  PubMed  Google Scholar 

  51. Vang, K.B. et al. IL-2, -7, and -15, but not thymic stromal lymphopoeitin, redundantly govern CD4+Foxp3+ regulatory T cell development. J. Immunol. 181, 3285–3290 (2007).

    Google Scholar 

  52. Liu, Y. et al. A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat. Immunol. 9, 632–640 (2008).

    CAS  PubMed  Google Scholar 

  53. Ouyang, W., Beckett, O., Ma, Q. & Li, M.O. Transforming growth factor-β signaling curbs thymic negative selection promoting regulatory T cell development. Immunity 32, 642–653 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Davidson, T.S., DiPaolo, R.J., Andersson, J. & Shevach, E.M. Cutting Edge: IL-2 is essential for TGF-β-mediated induction of Foxp3+ T regulatory cells. J. Immunol. 178, 4022–4026 (2007).

    CAS  PubMed  Google Scholar 

  56. Elias, K.M. et al. Retinoic acid inhibits Th17 polarization and enhances FoxP3 expression through a Stat-3/Stat-5 independent signaling pathway. Blood 111, 1013–1020 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Benson, M.J., Pino-Lagos, K., Rosemblatt, M. & Noelle, R.J. All-trans retinoic acid mediates enhanced Treg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204, 1765–1774 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun, C.M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hall, J.A. et al. Essential role for retinoic acid in the promotion of CD4+ T cell effector responses via retinoic acid receptor α. Immunity 34, 435–447 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Thornton, A.M., Donovan, E.E., Piccirillo, C.A. & Shevach, E.M. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J. Immunol. 172, 6519–6523 (2004).

    CAS  PubMed  Google Scholar 

  62. Sojka, D.K., Hughson, A., Sukiennicki, T.L. & Fowell, D.J. Early kinetic window of target T cell susceptibility to CD25+ regulatory T cell activity. J. Immunol. 175, 7274–7280 (2005).

    CAS  PubMed  Google Scholar 

  63. Pandiyan, P., Zheng, L., Ishihara, S., Reed, J. & Lenardo, M.J. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat. Immunol. 8, 1353–1362 (2007).

    CAS  PubMed  Google Scholar 

  64. Bettelli, E., Korn, T., Oukka, M. & Kuchroo, V.K. Induction and effector functions of TH17 cells. Nature 453, 1051–1057 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat. Rev. Immunol. 8, 337–348 (2008).

    CAS  PubMed  Google Scholar 

  66. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing cells. Immunity 24, 179–189 (2006).

    CAS  PubMed  Google Scholar 

  67. Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    CAS  PubMed  Google Scholar 

  68. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  PubMed  Google Scholar 

  69. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    CAS  PubMed  Google Scholar 

  70. Nurieva, R. et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448, 480–483 (2007).

    CAS  PubMed  Google Scholar 

  71. Bauquet, A.T. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat. Immunol. 10, 167–175 (2009).

    CAS  PubMed  Google Scholar 

  72. Korn, T. et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448, 484–487 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Zhou, L. et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat. Immunol. 8, 967–974 (2008).

    Google Scholar 

  74. Sonderegger, I., Kisielow, J., Meier, R., King, C. & Kopf, M. IL-21 and IL-21R are not required for development of Th17 cells and autoimmunity in vivo. Eur. J. Immunol. 38, 1833–1838 (2008).

    CAS  PubMed  Google Scholar 

  75. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    CAS  PubMed  Google Scholar 

  76. Nurieva, R.I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Johnston, R.J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cells. Science 325, 1006–1010 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).

    CAS  PubMed  Google Scholar 

  79. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Haynes, N.M. et al. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J. Immunol. 179, 5099–5108 (2007).

    CAS  PubMed  Google Scholar 

  82. M'Hidi, H. et al. High expression of the inhibitory receptor BTLA in T-follicular helper cells and in B-cell small lymphocytic lymphoma/chronic lymphocytic leukemia. Am. J. Clin. Pathol. 132, 589–596 (2009).

    CAS  PubMed  Google Scholar 

  83. Yusuf, I. et al. Germinal center T follicular helper cell IL-4 production is dependent on signaling lymphocytic activation molecule receptor (CD150). J. Immunol. 185, 190–202 (2010).

    CAS  PubMed  Google Scholar 

  84. Nurieva, R.I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29, 138–149 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Poholek, A.C. et al. In vivo regulation of Bcl6 and T follicular helper cell development. J. Immunol. 185, 313–326 (2010).

    CAS  PubMed  Google Scholar 

  86. Eto, D. et al. IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (Tfh) differentiation. PLoS ONE 6, e17739 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    CAS  PubMed  Google Scholar 

  88. Yang, X.P. et al. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat. Immunol. 12, 247–254 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Choi, Y.S. et al. ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34, 932–946 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Oestreich, K.J., Mohn, S.E. & Weinmann, A.S. Molecular mechanisms that control the expression and activity of Bcl-6 in TH1 cells to regulate flexibility with a TFH-like gene profile. Nat. Immunol. 13, 405–411 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ballesteros-Tato, A. et al. Interleukin-2 inhibits germinal center formation by limiting T follicular helper cell differentiation. Immunity 36, 847–856 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Johnston, R.J., Choi, Y.S., Diamond, J.A., Yang, J.A. & Crotty, S. STAT5 is a potent negative regulator of TFH cell differentiation. J. Exp. Med. 209, 243–250 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Nurieva, R.I. et al. STAT5 protein negatively regulates T follicular hlper (Tfh) cell generation and function. J. Biol. Chem. 287, 11234–11239 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Turner, M.S., Kane, L.P. & Morel, P.A. Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion. J. Immunol. 183, 4895–4903 (2009).

    CAS  PubMed  Google Scholar 

  95. Iezzi, G. et al. CD40–CD40L cross-talk integrates strong antigenic signals and microbial stimuli to induce development of IL-17-producing CD4+ T cells. Proc. Natl. Acad. Sci. USA 106, 876–881 (2009).

    PubMed  PubMed Central  Google Scholar 

  96. Molinero, L.L., Miller, M.L., Evaristo, C. & Alegre, M.L. High TCR stimuli prevent induced regulatory T cell differentiation in a NF-κB-dependent manner. J. Immunol. 186, 4609–4617 (2011).

    CAS  PubMed  Google Scholar 

  97. Fazilleau, N., McHeyzer-Williams, L.J., Rosen, H. & McHeyzer-Williams, M.G. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat. Immunol. 10, 375–384 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Lee, I.H., Li, W.P., Hisert, K.B. & Ivashkiv, L.B. Inhibition of interleukin 2 signaling and signal transducer and activator of transcription (STAT)5 activation during T cell receptor-mediated feedback inhibition of T cell expansion. J. Exp. Med. 190, 1263–1274 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Powell, J.D., Pollizzi, K.N., Heikamp, E.B. & Horton, M.R. Regulation of immune responses by mTOR. Annu. Rev. Immunol. 30, 39–68 (2012).

    CAS  PubMed  Google Scholar 

  100. Chi, H. Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 12, 325–338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by the Division of Intramural Research of the National Institute of Allergy and Infectious Diseases (US National Institutes of Health).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hidehiro Yamane or William E Paul.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamane, H., Paul, W. Cytokines of the γc family control CD4+ T cell differentiation and function. Nat Immunol 13, 1037–1044 (2012). https://doi.org/10.1038/ni.2431

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2431

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing