Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

How the TCR balances sensitivity and specificity for the recognition of self and pathogens

Abstract

The T cell repertoire is generated during thymic development in preparation for the response to antigens from pathogens. The T cell repertoire is shaped by positive selection, which requires recognition by the T cell antigen receptor (TCR) of complexes of self peptide and major histocompatibility complex proteins (self-pMHC) with low affinity, and negative selection, which eliminates T cells with TCRs that recognize self-pMHC with high affinity. This generates a repertoire with low affinity for self-pMHC but high affinity for foreign antigens. The TCR must successfully engage both of these ligands for development, homeostasis and immune responses. This review discusses mechanisms underlying the interaction of the TCR with peptide–major histocompatibility complex ligands of varying affinity and highlights signaling mechanisms that enable the TCR to generate different responses to very distinct ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flexibility in TCR recognition of pMHC.
Figure 2: Ligand affinity determines TCR signaling.
Figure 3: Specific recognition of agonist and self-pMHC induces distinct TCR signaling.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Smith-Garvin, J.E., Koretzky, G.A. & Jordan, M.S. T cell activation. Annu. Rev. Immunol. 27, 591–619 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fraser, I.D. & Germain, R.N. Navigating the network: signaling cross-talk in hematopoietic cells. Nat. Immunol. 10, 327–331 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hogquist, K.A. et al. Identification of a naturally occurring ligand for thymic positive selection. Immunity 6, 389–399 (1997).

    CAS  PubMed  Google Scholar 

  4. Hu, Q. et al. Specific recognition of thymic self-peptides induces the positive selection of cytotoxic T lymphocytes. Immunity 7, 221–231 (1997).

    CAS  PubMed  Google Scholar 

  5. Lo, W.L. et al. An endogenous peptide positively selects and augments the activation and survival of peripheral CD4+ T cells. Nat. Immunol. 10, 1155–1161 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ebert, P.J., Jiang, S., Xie, J., Li, Q.J. & Davis, M.M. An endogenous positively selecting peptide enhances mature T cell responses and becomes an autoantigen in the absence of microRNA miR-181a. Nat. Immunol. 10, 1162–1169 (2009). References 3–6 describe endogenous self peptides that mediate positive selection of CD4+ and CD8+ TCR-transgenic T cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Evavold, B.D. & Allen, P.M. Separation of IL-4 production from Th cell proliferation by an altered T cell receptor ligand. Science 252, 1308–1310 (1991). This study, examining T cell responses to APLs, discovered the different signaling abilities of TCRs.

    CAS  PubMed  Google Scholar 

  8. Hogquist, K.A. et al. T cell receptor antagonist peptides induce positive selection. Cell 76, 17–27 (1994). This study provided the first evidence of specific recognition of presented peptide antigens in positive selection.

    CAS  PubMed  Google Scholar 

  9. Rudolph, M.G., Stanfield, R.L. & Wilson, I.A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466 (2006).

    CAS  PubMed  Google Scholar 

  10. Zerrahn, J., Held, W. & Raulet, D.H. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88, 627–636 (1997). This study examined the alloreactive frequency of preselection thymocytes, providing the first evidence for germline affinity of the TCR for MHC.

    CAS  PubMed  Google Scholar 

  11. Feng, D., Bond, C.J., Ely, L.K., Maynard, J. & Garcia, K.C. Structural evidence for a germline-encoded T cell receptor-major histocompatibility complex interaction 'codon'. Nat. Immunol. 8, 975–983 (2007).

    CAS  PubMed  Google Scholar 

  12. Dai, S. et al. Crossreactive T cells spotlight the germline rules for αβ T cell-receptor interactions with MHC molecules. Immunity 28, 324–334 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Scott-Browne, J.P., White, J., Kappler, J.W., Gapin, L. & Marrack, P. Germline-encoded amino acids in the αβ T-cell receptor control thymic selection. Nature 458, 1043–1046 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Morris, G.P., Ni, P.P. & Allen, P.M. Alloreactivity is limited by the endogenous peptide repertoire. Proc. Natl. Acad. Sci. USA 108, 3695–3700 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Yin, L. et al. A single T cell receptor bound to major histocompatibility complex class I and class II glycoproteins reveals switchable TCR conformers. Immunity 35, 23–33 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu, L.C., Tuot, D.S., Lyons, D.S., Garcia, K.C. & Davis, M.M. Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature 418, 552–556 (2002).

    CAS  PubMed  Google Scholar 

  17. Felix, N.J. et al. Alloreactive T cells respond specifically to multiple distinct peptide-MHC complexes. Nat. Immunol. 8, 388–397 (2007). This study described the phenomenon of polyspecificity, demonstrating that a single TCR can specifically recognize multiple peptide antigens presented by a given MHC.

    CAS  PubMed  Google Scholar 

  18. Garcia, K.C., Adams, J.J., Feng, D. & Ely, L.K. The molecular basis of TCR germline bias for MHC is surprisingly simple. Nat. Immunol. 10, 143–147 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Huseby, E.S. et al. How the T cell repertoire becomes peptide and MHC specific. Cell 122, 247–260 (2005).

    CAS  PubMed  Google Scholar 

  20. Matsui, K. et al. Low affinity interaction of peptide-MHC complexes with T cell receptors. Science 254, 1788–1791 (1991).

    CAS  PubMed  Google Scholar 

  21. Huang, J. et al. The kinetics of two-dimensional TCR and pMHC interactions determine T-cell responsiveness. Nature 464, 932–936 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Huppa, J.B. et al. TCR-peptide-MHC interactions in situ show accelerated kinetics and increased affinity. Nature 463, 963–967 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sloan-Lancaster, J., Evavold, B.D. & Allen, P.M. Induction of T-cell anergy by altered T-cell-receptor ligand on live antigen-presenting cells. Nature 363, 156–159 (1993).

    CAS  PubMed  Google Scholar 

  24. Sloan-Lancaster, J., Shaw, A.S., Rothbard, J.B. & Allen, P.M. Partial T cell signaling: altered phospho-ζ and lack of zap70 recruitment in APL-induced T cell anergy. Cell 79, 913–922 (1994).

    CAS  PubMed  Google Scholar 

  25. Hogquist, K.A., Jameson, S.C. & Bevan, M.J. Strong agonist ligands for the T cell receptor do not mediate positive selection of functional CD8+ T cells. Immunity 3, 79–86 (1995).

    CAS  PubMed  Google Scholar 

  26. Sebzda, E. et al. Mature T cell reactivity altered by peptide agonist that induces positive selection. J. Exp. Med. 183, 1093–1104 (1996).

    CAS  PubMed  Google Scholar 

  27. Kersh, E.N., Shaw, A.S. & Allen, P.M. Fidelity of T cell activation through multistep T cell receptor ζ phosphorylation. Science 281, 572–575 (1998).

    CAS  PubMed  Google Scholar 

  28. Kersh, E.N., Kersh, G.J. & Allen, P.M. Partially phosphorylated T cell receptor ζ molecules can inhibit T cell activation. J. Exp. Med. 190, 1627–1636 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cahalan, M.D. & Chandy, K.G. The functional network of ion channels in T lymphocytes. Immunol. Rev. 231, 59–87 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Aivazian, D. & Stern, L.J. Phosphorylation of T cell receptor ζ is regulated by a lipid dependent folding transition. Nat. Struct. Biol. 7, 1023–1026 (2000).

    CAS  PubMed  Google Scholar 

  31. Xu, C. et al. Regulation of T cell receptor activation by dynamic membrane binding of the CD3ɛ cytoplasmic tyrosine-based motif. Cell 135, 702–713 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sun, Z.J., Kim, K.S., Wagner, G. & Reinherz, E.L. Mechanisms contributing to T cell receptor signaling and assembly revealed by the solution structure of an ectodomain fragment of the CD3ɛγ heterodimer. Cell 105, 913–923 (2001).

    CAS  PubMed  Google Scholar 

  33. Minguet, S., Swamy, M., Alarcon, B., Luescher, I.F. & Schamel, W.W. Full activation of the T cell receptor requires both clustering and conformational changes at CD3. Immunity 26, 43–54 (2007).

    CAS  PubMed  Google Scholar 

  34. Martínez-Martin, N. et al. Cooperativity between T cell receptor complexes revealed by conformational mutants of CD3ɛ. Sci. Signal. 2, ra43 (2009).

    PubMed  Google Scholar 

  35. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    CAS  PubMed  Google Scholar 

  36. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    CAS  PubMed  Google Scholar 

  37. Dustin, M.L. & Depoil, D. New insights into the T cell synapse from single molecule techniques. Nat. Rev. Immunol. 11, 672–684 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Bunnell, S.C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol. 158, 1263–1275 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Manz, B.N., Jackson, B.L., Petit, R.S., Dustin, M.L. & Groves, J. T-cell triggering thresholds are modulated by the number of antigen within individual T-cell receptor clusters. Proc. Natl. Acad. Sci. USA 108, 9089–9094 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wülfing, C. et al. Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat. Immunol. 3, 42–47 (2002).

    PubMed  Google Scholar 

  41. Krogsgaard, M. et al. Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature 434, 238–243 (2005). References 40 and 41 describe the participation of self-pMHC complexes in T cell response to agonist pMHC ligands.

    CAS  PubMed  Google Scholar 

  42. Kuhns, M.S. et al. Evidence for a functional sidedness to the αβTCR. Proc. Natl. Acad. Sci. USA 107, 5094–5099 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Vidal, K., Daniel, C., Hill, M., Littman, D.R. & Allen, P.M. Differential requirements for CD4 in TCR-ligand interactions. J. Immunol. 163, 4811–4818 (1999).

    CAS  PubMed  Google Scholar 

  44. Yachi, P.P., Ampudia, J., Zal, T. & Gascoigne, N.R. Altered peptide ligands induce delayed CD8-T cell receptor interaction–a role for CD8 in distinguishing antigen quality. Immunity 25, 203–211 (2006).

    CAS  PubMed  Google Scholar 

  45. Campi, G., Varma, R. & Dustin, M.L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 202, 1031–1036 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6, 1253–1262 (2005).

    CAS  PubMed  Google Scholar 

  47. Lillemeier, B.F. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat. Immunol. 11, 90–96 (2010).

    CAS  PubMed  Google Scholar 

  48. Purbhoo, M.A. et al. Dynamics of subsynaptic vesicles and surface microclusters at the immunological synapse. Sci. Signal. 3, ra36 (2010).

    PubMed  Google Scholar 

  49. Monks, C.R., Kupfer, H., Tamir, I., Barlow, A. & Kupfer, A. Selective modulation of protein kinase C-θ during T-cell activation. Nature 385, 83–86 (1997).

    CAS  PubMed  Google Scholar 

  50. Yokosuka, T. et al. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C θ translocation. Immunity 29, 589–601 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Choudhuri, K., Wiseman, D., Brown, M.H., Gould, K. & van der Merwe, P.A. T-cell receptor triggering is critically dependent on the dimensions of its peptide-MHC ligand. Nature 436, 578–582 (2005).

    CAS  PubMed  Google Scholar 

  52. Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M.L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Daniels, M.A. et al. Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444, 724–729 (2006).

    CAS  PubMed  Google Scholar 

  54. Cemerski, S. et al. The stimulatory potency of T cell antigens is influenced by the formation of the immunological synapse. Immunity 26, 345–355 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. von Boehmer, H. Unique features of the pre-T-cell receptor α-chain: not just a surrogate. Nat. Rev. Immunol. 5, 571–577 (2005).

    CAS  PubMed  Google Scholar 

  56. Maillard, I., Fang, T. & Pear, W.S. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu. Rev. Immunol. 23, 945–974 (2005).

    CAS  PubMed  Google Scholar 

  57. Rothenberg, E.V., Moore, J.E. & Yui, M.A. Launching the T-cell-lineage developmental programme. Nat. Rev. Immunol. 8, 9–21 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Saint-Ruf, C. et al. Analysis and expression of a cloned pre-T cell receptor gene. Science 266, 1208–1212 (1994).

    CAS  PubMed  Google Scholar 

  59. Fehling, H.J., Krotkova, A., Saint-Ruf, C. & von Boehmer, H. Crucial role of the pre-T-cell receptor α gene in development of αβ but not γδ T cells. Nature 375, 795–798 (1995).

    CAS  PubMed  Google Scholar 

  60. Pang, S.S. et al. The structural basis for autonomous dimerization of the pre-T-cell antigen receptor. Nature 467, 844–848 (2010). This study reported a structure of the pre-TCRα paired with a TCRβ, providing a mechanistic explanation for the observed biology of the pre-TCR in β-selection.

    CAS  PubMed  Google Scholar 

  61. Borowski, C., Li, X., Aifantis, I., Gounari, F. & von Boehmer, H. Pre-TCRα and TCRα are not interchangeable partners of TCRβ during T lymphocyte development. J. Exp. Med. 199, 607–615 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Ishikawa, E., Miyake, Y., Hara, H., Saito, T. & Yamasaki, S. Germ-line elimination of electric charge on pre-T-cell receptor (TCR) impairs autonomous signaling for β-selection and TCR repertoire formation. Proc. Natl. Acad. Sci. USA 107, 19979–19984 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Irving, B.A., Alt, F.W. & Killeen, N. Thymocyte development in the absence of pre-T cell receptor extracellular immunoglobulin domains. Science 280, 905–908 (1998).

    CAS  PubMed  Google Scholar 

  64. Aifantis, I. et al. A critical role for the cytoplasmic tail of pTα in T lymphocyte development. Nat. Immunol. 3, 483–488 (2002).

    CAS  PubMed  Google Scholar 

  65. Haks, M.C. et al. Low activation threshold as a mechanism for ligand-independent signaling in pre-T cells. J. Immunol. 170, 2853–2861 (2003).

    CAS  PubMed  Google Scholar 

  66. Yamasaki, S. et al. Mechanistic basis of pre-T cell receptor-mediated autonomous signaling critical for thymocyte development. Nat. Immunol. 7, 67–75 (2006).

    CAS  PubMed  Google Scholar 

  67. Li, Q.J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Immunity 129, 147–161 (2007). This study described an additional role for microRNA in modulating TCR signaling capacity during thymocyte development through regulation of expression of signaling components, particularly inhibitory phosphatases.

    CAS  Google Scholar 

  68. Kisielow, P., Teh, H.S., Bluthmann, H. & von Boehmer, H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 335, 730–733 (1988). This study provided the first evidence that positive selection is mediated by TCR recognition of MHC.

    CAS  PubMed  Google Scholar 

  69. Teh, H.S. et al. Thymic major histocompatibility complex antigens and the αβ T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature 335, 229–233 (1988).

    CAS  PubMed  Google Scholar 

  70. Finkel, T.H. et al. The thymus has two functionally distinct populations of immature αβ+ T cells: one population is deleted by ligation of αβ TCR. Cell 58, 1047–1054 (1989).

    CAS  PubMed  Google Scholar 

  71. Berg, L.J. et al. Antigen/MHC-specific T cells are preferentially exported from the thymus in the presence of their MHC ligand. Cell 58, 1035–1046 (1989).

    CAS  PubMed  Google Scholar 

  72. Alam, S.M. et al. T-cell-receptor affinity and thymocyte positive selection. Nature 381, 616–620 (1996).

    CAS  PubMed  Google Scholar 

  73. Williams, C.B., Engle, D.L., Kersh, G.J., Michael White, J. & Allen, P.M. A kinetic threshold between negative and positive selection based on the longevity of the T cell receptor-ligand complex. J. Exp. Med. 189, 1531–1544 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Kersh, G.J., Engle, D.L., Williams, C.B. & Allen, P.M. Ligand-specific selection of MHC class II-restricted thymocytes in fetal thymic organ culture. J. Immunol. 164, 5675–5682 (2000).

    CAS  PubMed  Google Scholar 

  75. Naeher, D. et al. A constant affinity threshold for T cell tolerance. J. Exp. Med. 204, 2553–2559 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ignatowicz, L., Kappler, J. & Marrack, P. The repertoire of T cells shaped by a single MHC/peptide ligand. Cell 84, 521–529 (1996). References 76 and 77 describe the ability of a single positively selecting pMHC ligand to generate a diverse T cell repertoire that can recognize a wide range of antigens.

    CAS  PubMed  Google Scholar 

  77. Wang, B. et al. A single peptide-MHC complex positively selects a diverse and specific CD8 T cell repertoire. Science 326, 871–874 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Davey, G.M. et al. Preselection thymocytes are more sensitive to T cell receptor stimulation than mature T cells. J. Exp. Med. 188, 1867–1874 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Pircher, H., Rohrer, U.H., Moskophidis, D., Zinkernagel, R.M. & Hengartner, H. Lower receptor avidity required for thymic clonal deletion than for effector T-cell function. Nature 351, 482–485 (1991).

    CAS  PubMed  Google Scholar 

  80. Werlen, G., Hausmann, B. & Palmer, E. A motif in the αβ T-cell receptor controls positive selection by modulating ERK activity. Nature 406, 422–426 (2000).

    CAS  PubMed  Google Scholar 

  81. Mariathasan, S. et al. Duration and strength of extracellular signal-regulated kinase signals are altered during positive versus negative thymocyte selection. J. Immunol. 167, 4966–4973 (2001).

    CAS  PubMed  Google Scholar 

  82. McNeil, L.K., Starr, T.K. & Hogquist, K.A. A requirement for sustained ERK signaling during thymocyte positive selection in vivo. Proc. Natl. Acad. Sci. USA 102, 13574–13579 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Fu, G. et al. Themis controls thymocyte selection through regulation of T cell antigen receptor-mediated signaling. Nat. Immunol. 10, 848–856 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Johnson, A.L. et al. Themis is a member of a new metazoan gene family and is required for the completion of thymocyte positive selection. Nat. Immunol. 10, 831–839 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lesourne, R. et al. Themis, a T cell-specific protein important for late thymocyte development. Nat. Immunol. 10, 840–847 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Singer, A. & Bosselut, R. CD4/CD8 coreceptors in thymocyte development, selection, and lineage commitment: analysis of the CD4/CD8 lineage decision. Adv. Immunol. 83, 91–131 (2004).

    CAS  PubMed  Google Scholar 

  87. Fischer, A.M., Katayama, C.D., Pages, G., Pouyssegur, J. & Hedrick, S.M. The role of Erk1 and Erk2 in multiple stages of T cell development. Immunity 23, 431–443 (2005).

    CAS  PubMed  Google Scholar 

  88. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    CAS  PubMed  Google Scholar 

  89. Hsieh, C.S., Zheng, Y., Liang, Y., Fontenot, J.D. & Rudensky, A.Y. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nat. Immunol. 7, 401–410 (2006).

    CAS  PubMed  Google Scholar 

  90. Moran, A.E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Lio, C.W. & Hsieh, C.S. A two-step process for thymic regulatory T cell development. Immunity 28, 100–111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Metzger, T.C. & Anderson, M.S. Control of central and peripheral tolerance by Aire. Immunol. Rev. 241, 89–103 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gallegos, A.M. & Bevan, M.J. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 200, 1039–1049 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Bommhardt, U., Scheuring, Y., Bickel, C., Zamoyska, R. & Hunig, T. MEK activity regulates negative selection of immature CD4+CD8+ thymocytes. J. Immunol. 164, 2326–2337 (2000).

    CAS  PubMed  Google Scholar 

  95. Mallaun, M., Zenke, G. & Palmer, E. A discrete affinity-driven elevation of ZAP-70 kinase activity initiates negative selection. J. Recept. Signal Transduct. Res. 30, 430–443 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Filbert, E.L. et al. Kinase suppressor of Ras 1 is required for full ERK activation in thymocytes but not for thymocyte selection. Eur. J. Immunol. 40, 3226–3234 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Surh, C.D. & Sprent, J. Homeostasis of naive and memory T cells. Immunity 29, 848–862 (2008).

    CAS  PubMed  Google Scholar 

  98. Takada, K. & Jameson, S.C. Naive T cell homeostasis: from awareness of space to a sense of place. Nat. Rev. Immunol. 9, 823–832 (2009).

    CAS  PubMed  Google Scholar 

  99. Takeda, S., Rodewald, H.R., Arakawa, H., Bluethmann, H. & Shimizu, T. MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity 5, 217–228 (1996).

    CAS  PubMed  Google Scholar 

  100. Tanchot, C., Lemonnier, F.A., Perarnau, B., Freitas, A.A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naive or memory T cells. Science 276, 2057–2062 (1997).

    CAS  PubMed  Google Scholar 

  101. Ernst, B., Lee, D.S., Chang, J.M., Sprent, J. & Surh, C.D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173–181 (1999).

    CAS  PubMed  Google Scholar 

  102. Viret, C., Wong, F.S. & Janeway, C.A. Jr. Designing and maintaining the mature TCR repertoire: the continuum of self-peptide:self-MHC complex recognition. Immunity 10, 559–568 (1999).

    CAS  PubMed  Google Scholar 

  103. Goldrath, A.W. & Bevan, M.J. Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 11, 183–190 (1999). References 101–103 identify the self-pMHCs important for T cell homeostasis in the periphery as the same self-ligands required for positive selection.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Goldrath, A.W., Hogquist, K.A. & Bevan, M.J. CD8 lineage commitment in the absence of CD8. Immunity 6, 633–642 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Kassiotis, G., Zamoyska, R. & Stockinger, B. Involvement of avidity for major histocompatibility complex in homeostasis of naive and memory T cells. J. Exp. Med. 197, 1007–1016 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Kieper, W.C., Burghardt, J.T. & Surh, C.D. A role for TCR affinity in regulating naive T cell homeostasis. J. Immunol. 172, 40–44 (2004).

    CAS  PubMed  Google Scholar 

  107. Tarakhovsky, A. et al. A role for CD5 in TCR-mediated signal transduction and thymocyte selection. Science 269, 535–537 (1995).

    CAS  PubMed  Google Scholar 

  108. Smith, K. et al. Sensory adaptation in naive peripheral CD4 T cells. J. Exp. Med. 194, 1253–1261 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Azzam, H.S. et al. CD5 expression is developmentally regulated by T cell receptor (TCR) signals and TCR avidity. J. Exp. Med. 188, 2301–2311 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Palmer, M.J., Mahajan, V.S., Chen, J., Irvine, D.J. & Lauffenburger, D.A. Signaling thresholds govern heterogeneity in IL-7-receptor-mediated responses of naive CD8+ T cells. Immunol. Cell Biol. 89, 581–594 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Ge, Q., Bai, A., Jones, B., Eisen, H.N. & Chen, J. Competition for self-peptide-MHC complexes and cytokines between naive and memory CD8+ T cells expressing the same or different T cell receptors. Proc. Natl. Acad. Sci. USA 101, 3041–3046 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Park, J.H. et al. ′Coreceptor tuning': cytokine signals transcriptionally tailor CD8 coreceptor expression to the self-specificity of the TCR. Nat. Immunol. 8, 1049–1059 (2007).

    CAS  PubMed  Google Scholar 

  113. Casrouge, A. et al. Size estimate of the αβ TCR repertoire of naive mouse splenocytes. J. Immunol. 164, 5782–5787 (2000).

    CAS  PubMed  Google Scholar 

  114. Robins, H.S. et al. Comprehensive assessment of T-cell receptor β-chain diversity in αβ T cells. Blood 114, 4099–4107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Harding, C.V. & Unanue, E.R. Quantitation of antigen-presenting cell MHC class II/peptide complexes necessary for T-cell stimulation. Nature 346, 574–576 (1990).

    CAS  PubMed  Google Scholar 

  116. Sykulev, Y., Joo, M., Vturina, I., Tsomides, T.J. & Eisen, H.N. Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response. Immunity 4, 565–571 (1996).

    CAS  PubMed  Google Scholar 

  117. Irvine, D.J., Purbhoo, M.A., Krogsgaard, M. & Davis, M.M. Direct observation of ligand recognition by T cells. Nature 419, 845–849 (2002).

    CAS  PubMed  Google Scholar 

  118. Luescher, I.F. et al. CD8 modulation of T-cell antigen receptor-ligand interactions on living cytotoxic T lymphocytes. Nature 373, 353–356 (1995).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M Allen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, G., Allen, P. How the TCR balances sensitivity and specificity for the recognition of self and pathogens. Nat Immunol 13, 121–128 (2012). https://doi.org/10.1038/ni.2190

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2190

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing