Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast

Abstract

The autosomal recessive disorder Shwachman-Diamond syndrome, characterized by bone marrow failure and leukemia predisposition, is caused by deficiency of the highly conserved Shwachman-Bodian-Diamond syndrome (SBDS) protein. Here, we identify the function of the yeast SBDS ortholog Sdo1, showing that it is critical for the release and recycling of the nucleolar shuttling factor Tif6 from pre-60S ribosomes, a key step in 60S maturation and translational activation of ribosomes. Using genome-wide synthetic genetic array mapping, we identified multiple TIF6 gain-of-function alleles that suppressed the pre-60S nuclear export defects and cytoplasmic mislocalization of Tif6 observed in sdo1Δ cells. Sdo1 appears to function within a pathway containing elongation factor–like 1, and together they control translational activation of ribosomes. Thus, our data link defective late 60S ribosomal subunit maturation to an inherited bone marrow failure syndrome associated with leukemia predisposition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TIF6 gain-of-function alleles can bypass the requirement for SDO1.
Figure 2: Translational impairment and aminoglycoside sensitivity of sdo1 mutant cells is rescued by TIF6 gain-of-function alleles.
Figure 3: Sdo1 is required for 60S ribosomal subunit biogenesis.
Figure 4: Tif6 suppressor proteins show reduced binding to 60S ribosomes.
Figure 5: Sdo1 cofractionates with cytoplasmic pre-60S ribosomes and does not shuttle in a Crm1-dependent manner.
Figure 6: SDS macrophages show redistribution of eIF6 protein.
Figure 7: Model for Sdo1 function in late 60S ribosomal subunit maturation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Hall, G.W., Dale, P. & Dodge, J.A. Shwachman-Diamond syndrome: UK perspective. Arch. Dis. Child. 91, 521–524 (2006).

    Article  CAS  Google Scholar 

  2. Donadieu, J. et al. Hematopoietic stem cell transplantation for Shwachman-Diamond syndrome: experience of the French neutropenia registry. Bone Marrow Transplant. 36, 787–792 (2005).

    Article  CAS  Google Scholar 

  3. Boocock, G.R. et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat. Genet. 33, 97–101 (2003).

    Article  CAS  Google Scholar 

  4. Koonin, E.V., Wolf, Y.I. & Aravind, L. Prediction of the archaeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach. Genome Res. 11, 240–252 (2001).

    Article  CAS  Google Scholar 

  5. Wu, L.F. et al. Large-scale prediction of Saccharomyces cerevisiae gene function using overlapping transcriptional clusters. Nat. Genet. 31, 255–265 (2002).

    Article  CAS  Google Scholar 

  6. Peng, W.T. et al. A panoramic view of yeast noncoding RNA processing. Cell 113, 919–933 (2003).

    Article  CAS  Google Scholar 

  7. Krogan, N.J. et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006).

    Article  CAS  Google Scholar 

  8. Shammas, C. et al. Structural and mutational analysis of the SBDS protein family. Insight into the leukemia-associated Shwachman-Diamond Syndrome. J. Biol. Chem. 280, 19221–19229 (2005).

    Article  CAS  Google Scholar 

  9. Savchenko, A. et al. The Shwachman-Bodian-Diamond syndrome protein family is involved in RNA metabolism. J. Biol. Chem. 280, 19213–19220 (2005).

    Article  CAS  Google Scholar 

  10. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  Google Scholar 

  11. Andersen, J.S. et al. Nucleolar proteome dynamics. Nature 433, 77–83 (2005).

    Article  CAS  Google Scholar 

  12. Austin, K.M., Leary, R.J. & Shimamura, A. The Shwachman-Diamond SBDS protein localizes to the nucleolus. Blood 106, 1253–1258 (2005).

    Article  CAS  Google Scholar 

  13. Zhang, S., Shi, M., Hui, C.C. & Rommens, J.M. Loss of the mouse ortholog of the Shwachman-Diamond syndrome gene (Sbds) results in early embryonic lethality. Mol. Cell. Biol. 26, 6656–6663 (2006).

    Article  CAS  Google Scholar 

  14. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285, 901–906 (1999).

    Article  CAS  Google Scholar 

  15. Jorgensen, P. et al. High-resolution genetic mapping with ordered arrays of Saccharomyces cerevisiae deletion mutants. Genetics 162, 1091–1099 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Becam, A.M., Nasr, F., Racki, W.J., Zagulski, M. & Herbert, C.J. Ria1p (Ynl163c), a protein similar to elongation factors 2, is involved in the biogenesis of the 60S subunit of the ribosome in Saccharomyces cerevisiae. Mol. Genet. Genomics 266, 454–462 (2001).

    Article  CAS  Google Scholar 

  17. Senger, B. et al. The nucle(ol)ar Tif6p and Efl1p are required for a late cytoplasmic step of ribosome synthesis. Mol. Cell 8, 1363–1373 (2001).

    Article  CAS  Google Scholar 

  18. Basu, U., Si, K., Warner, J.R. & Maitra, U. The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis. Mol. Cell. Biol. 21, 1453–1462 (2001).

    Article  CAS  Google Scholar 

  19. Ceci, M. et al. Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature 426, 579–584 (2003).

    Article  CAS  Google Scholar 

  20. Groft, C.M., Beckmann, R., Sali, A. & Burley, S.K. Crystal structures of ribosome anti-association factor IF6. Nat. Struct. Biol. 7, 1156–1164 (2000).

    Article  CAS  Google Scholar 

  21. Schroeder, R., Waldsich, C. & Wank, H. Modulation of RNA function by aminoglycoside antibiotics. EMBO J. 19, 1–9 (2000).

    Article  CAS  Google Scholar 

  22. Kressler, D., de la Cruz, J., Rojo, M. & Linder, P. Fal1p is an essential DEAD-box protein involved in 40S-ribosomal-subunit biogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 7283–7294 (1997).

    Article  CAS  Google Scholar 

  23. Foiani, M., Cigan, A.M., Paddon, C.J., Harashima, S. & Hinnebusch, A.G. GCD2, a translational repressor of the GCN4 gene, has a general function in the initiation of protein synthesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 3203–3216 (1991).

    Article  CAS  Google Scholar 

  24. Hurt, E. et al. A novel in vivo assay reveals inhibition of ribosomal nuclear export in ran-cycle and nucleoporin mutants. J. Cell Biol. 144, 389–401 (1999).

    Article  CAS  Google Scholar 

  25. West, M., Hedges, J.B., Chen, A. & Johnson, A.W. Defining the order in which Nmd3p and Rpl10p load onto nascent 60S ribosomal subunits. Mol. Cell. Biol. 25, 3802–3813 (2005).

    Article  CAS  Google Scholar 

  26. Dick, F.A., Karamanou, S. & Trumpower, B.L. QSR1, an essential yeast gene with a genetic relationship to a subunit of the mitochondrial cytochrome bc1 complex, codes for a 60 S ribosomal subunit protein. J. Biol. Chem. 272, 13372–13379 (1997).

    Article  CAS  Google Scholar 

  27. Hazbun, T.R. et al. Assigning function to yeast proteins by integration of technologies. Mol. Cell 12, 1353–1365 (2003).

    Article  CAS  Google Scholar 

  28. Ho, J.H., Kallstrom, G. & Johnson, A.W. Nmd3p is a Crm1p-dependent adapter protein for nuclear export of the large ribosomal subunit. J. Cell Biol. 151, 1057–1066 (2000).

    Article  CAS  Google Scholar 

  29. Kudo, N. et al. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242, 540–547 (1998).

    Article  CAS  Google Scholar 

  30. Hung, N.J. & Johnson, A.W. Nuclear recycling of the pre-60S ribosomal subunit-associated factor Arx1 depends on Rei1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 26, 3718–3727 (2006).

    Article  CAS  Google Scholar 

  31. Graindorge, J.S. et al. Deletion of EFL1 results in heterogeneity of the 60 S GTPase-associated rRNA conformation. J. Mol. Biol. 352, 355–369 (2005).

    Article  CAS  Google Scholar 

  32. Spahn, C.M. et al. Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation. EMBO J. 23, 1008–1019 (2004).

    Article  CAS  Google Scholar 

  33. Rodnina, M.V., Savelsbergh, A. & Wintermeyer, W. Dynamics of translation on the ribosome: molecular mechanics of translocation. FEMS Microbiol. Rev. 23, 317–333 (1999).

    Article  CAS  Google Scholar 

  34. Draptchinskaia, N. et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat. Genet. 21, 169–175 (1999).

    Article  CAS  Google Scholar 

  35. Gazda, H.T. et al. Ribosomal protein S24 gene is mutated in Diamond-Blackfan anemia. Am. J. Hum. Genet. 79, 1110–1118 (2006).

    Article  CAS  Google Scholar 

  36. Heiss, N.S. et al. X-linked dyskeratosis congenita is caused by mutations in a highly conserved gene with putative nucleolar functions. Nat. Genet. 19, 32–38 (1998).

    Article  CAS  Google Scholar 

  37. Lafontaine, D.L., Bousquet-Antonelli, C., Henry, Y., Caizergues-Ferrer, M. & Tollervey, D. The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. Genes Dev. 12, 527–537 (1998).

    Article  CAS  Google Scholar 

  38. Ruggero, D. et al. Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 299, 259–262 (2003).

    Article  CAS  Google Scholar 

  39. Yoon, A. et al. Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 312, 902–906 (2006).

    Article  CAS  Google Scholar 

  40. Wong, J.M. & Collins, K. Telomerase RNA level limits telomere maintenance in X-linked dyskeratosis congenita. Genes Dev. 20, 2848–2858 (2006).

    Article  CAS  Google Scholar 

  41. Amsterdam, A. et al. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol. 2, E139 (2004).

    Article  Google Scholar 

  42. Watson, K.L., Konrad, K.D., Woods, D.F. & Bryant, P.J. Drosophila homolog of the human S6 ribosomal protein is required for tumor suppression in the hematopoietic system. Proc. Natl. Acad. Sci. USA 89, 11302–11306 (1992).

    Article  CAS  Google Scholar 

  43. Boocock, G.R., Marit, M.R. & Rommens, J.M. Phylogeny, sequence conservation, and functional complementation of the SBDS protein family. Genomics (2006).

  44. Tong, A.H. et al. Global mapping of the yeast genetic interaction network. Science 303, 808–813 (2004).

    Article  CAS  Google Scholar 

  45. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001).

    Article  CAS  Google Scholar 

  46. Davierwala, A.P. et al. The synthetic genetic interaction spectrum of essential genes. Nat. Genet. 37, 1147–1152 (2005).

    Article  CAS  Google Scholar 

  47. Carr-Schmid, A. et al. Mutations in elongation factor 1beta, a guanine nucleotide exchange factor, enhance translational fidelity. Mol. Cell. Biol. 19, 5257–5266 (1999).

    Article  CAS  Google Scholar 

  48. Schmitt, M.E., Brown, T.A. & Trumpower, B.L. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18, 3091–3092 (1990).

    Article  CAS  Google Scholar 

  49. Ancliff, P.J. et al. Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia. Blood 108, 2182–2189 (2006).

    Article  CAS  Google Scholar 

  50. Sanvito, F. et al. The beta4 integrin interactor p27(BBP/eIF6) is an essential nuclear matrix protein involved in 60S ribosomal subunit assembly. J. Cell Biol. 144, 823–837 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Hurt (University of Heidelberg) for providing plasmids expressing Rpl25-eGFP, Rps2-eGFP and DsRed-Nop1; B. Trumpower (Dartmouth Medical School) for providing Rpl10 antisera; the Yeast Resource Center (http://www.yeastrc.org/pdr/) for providing strain TDY619; D. Tollervey for discussion of unpublished data; S. Munro (MRC Laboratory of Molecular Biology) for discussion and strains SEY6210 and BY4741; J. Kilmartin (MRC Laboratory of Molecular Biology) for discussion and plasmid pFA6-KanMX4; B. Andrews and J. Sale for critical reading of the manuscript and C. Hilcenko for advice on data analysis. We thank A. Johnson (University of Texas) for CRM1-T539C strains and M. Blundell (Great Ormond St. Hospital) for technical advice. This work was supported by grants from the UK Leukaemia Research Fund (A.J.W. and T.M.), the MRC (A.J.W. and C.C.W.), the Raymond and Beverly Sackler Fund (T.M. and C.C.W.), Shwachman-Diamond Support and the Leukemia and Lymphoma Society. C.B. was supported by grants from the National Cancer Institute of Canada, the Canadian Institute of Health Research, Genome Canada and Genome Ontario.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J Warren.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sdo1 depletion results in underaccumulation of 60S ribosomes. (PDF 166 kb)

Supplementary Fig. 2

[3H-methyl]-methionine pulse-chase labeling analysis of pre-rRNA processing in Sdo1-depleted cells. (PDF 611 kb)

Supplementary Fig. 3

Yeast Sdo1 and human SBDS FYSH domains are functionally interchangeable in sdo1Δ cells. (PDF 82 kb)

Supplementary Table 1

Yeast strains. (PDF 44 kb)

Supplementary Table 2

Primers. (PDF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menne, T., Goyenechea, B., Sánchez-Puig, N. et al. The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast. Nat Genet 39, 486–495 (2007). https://doi.org/10.1038/ng1994

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1994

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing