Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Canalization of development by microRNAs

Abstract

Animal development is an extremely robust process resulting in stereotyped outcomes. Canalization is a design principle wherein developmental pathways are stabilized to increase phenotypic reproducibility. Recent revelations into microRNA (miRNA) function suggest that miRNAs act as key players in canalizing genetic programs. We suggest that miRNA interactions with the network of protein-coding genes evolved to buffer stochastic perturbations and thereby confer robustness to developmental genetic programs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The architecture of the miRNA-target network.
Figure 2: miRNAs may sharpen developmental transitions.
Figure 3: miRNAs are suggested to canalize the pathway controlling scutellar bristle number.

Katie Ris

Similar content being viewed by others

References

  1. Waddington, C.H. Canalization of development and the inheritance of acquired characters. Nature 150, 563–565 (1942).

    Article  Google Scholar 

  2. Rendel, J.M. A model relating gene replicas and gene repression to phenotypic expression and variability. Proc. Natl. Acad. Sci. USA 64, 578–583 (1969).

    Article  CAS  Google Scholar 

  3. Gibson, G. & Wagner, G. Canalization in evolutionary genetics: a stabilizing theory? Bioessays 22, 372–380 (2000).

    Article  CAS  Google Scholar 

  4. Flatt, T. The evolutionary genetics of canalization. Q. Rev. Biol. 80, 287–316 (2005).

    Article  Google Scholar 

  5. Queitsch, C., Sangster, T.A. & Lindquist, S. Hsp90 as a capacitor of phenotypic variation. Nature 417, 618–624 (2002).

    Article  CAS  Google Scholar 

  6. Rutherford, S.L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).

    Article  CAS  Google Scholar 

  7. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  8. Lewis, B. P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  Google Scholar 

  9. Xie, X. et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434, 338–345 (2005).

    Article  CAS  Google Scholar 

  10. Stark, A., Brennecke, J., Bushati, N., Russell, R.B. & Cohen, S.M. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146 (2005).

    Article  CAS  Google Scholar 

  11. Brennecke, J., Stark, A., Russell, R.B. & Cohen, S.M. Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005).

    Article  Google Scholar 

  12. Grun, D., Wang, Y.L., Langenberger, D., Gunsalus, K.C. & Rajewsky, N. microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput. Biol. 1, e13 (2005).

    Article  Google Scholar 

  13. Farh, K.K. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    Article  CAS  Google Scholar 

  14. Lee, R.C., Feinbaum, R.L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  Google Scholar 

  15. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  Google Scholar 

  16. Reinhart, B.J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    Article  CAS  Google Scholar 

  17. Lin, S.Y. et al. The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev. Cell 4, 639–650 (2003).

    Article  CAS  Google Scholar 

  18. Johnston, R.J. & Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426, 845–849 (2003).

    Article  CAS  Google Scholar 

  19. Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B. & Cohen, S.M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003).

    Article  CAS  Google Scholar 

  20. Abrahante, J.E. et al. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev. Cell 4, 625–637 (2003).

    Article  CAS  Google Scholar 

  21. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).

    Article  CAS  Google Scholar 

  22. Cobb, B.S. et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J. Exp. Med. 201, 1367–1373 (2005).

    Article  CAS  Google Scholar 

  23. Giraldez, A.J. et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833–838 (2005).

    Article  CAS  Google Scholar 

  24. Harfe, B.D., McManus, M.T., Mansfield, J.H., Hornstein, E. & Tabin, C.J. The RNaseIII enzyme Dicer is required for morphogenesis but not patterning of the vertebrate limb. Proc. Natl. Acad. Sci. USA 102, 10898–10903 (2005).

    Article  CAS  Google Scholar 

  25. Muljo, S.A. et al. Aberrant T cell differentiation in the absence of Dicer. J. Exp. Med. 202, 261–269 (2005).

    Article  CAS  Google Scholar 

  26. Harris, K.S., Zhang, Z., McManus, M.T., Harfe, B.D. & Sun, X. Dicer function is essential for lung epithelium morphogenesis. Proc. Natl. Acad. Sci. USA 103, 2208–2213 (2006).

    Article  CAS  Google Scholar 

  27. John, B. et al. Human microRNA targets. PLoS Biol. 2, e363 (2004).

    Article  Google Scholar 

  28. Krek, A. et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005).

    Article  CAS  Google Scholar 

  29. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  Google Scholar 

  30. Chang, S., Johnston, R.J., Jr., Frokjaer-Jensen, C., Lockery, S. & Hobert, O. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 430, 785–789 (2004).

    Article  CAS  Google Scholar 

  31. Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl. Acad. Sci. USA 100, 11980–11985 (2003).

    Article  CAS  Google Scholar 

  32. Johnston, R.J., Jr., Chang, S., Etchberger, J.F., Ortiz, C.O. & Hobert, O. MicroRNAs acting in a double-negative feedback loop to control a neuronal cell fate decision. Proc. Natl. Acad. Sci. USA 102, 12449–12454 (2005).

    Article  CAS  Google Scholar 

  33. Hornstein, E. et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438, 671–674 (2005).

    Article  CAS  Google Scholar 

  34. Ronshaugen, M., Biemar, F., Piel, J., Levine, M. & Lai, E.C. The Drosophila microRNA iab-4 causes a dominant homeotic transformation of halteres to wings. Genes Dev. 19, 2947–2952 (2005).

    Article  CAS  Google Scholar 

  35. Bartel, D.P. & Chen, C.Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396–400 (2004).

    Article  CAS  Google Scholar 

  36. O'Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V. & Mendell, J.T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    Article  CAS  Google Scholar 

  37. Poy, M.N. et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230 (2004).

    Article  CAS  Google Scholar 

  38. Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220 (2005).

    Article  CAS  Google Scholar 

  39. Schratt, G.M. et al. A brain-specific microRNA regulates dendritic spine development. Nature 439, 283–289 (2006).

    Article  CAS  Google Scholar 

  40. Sood, P., Krek, A., Zavolan, M., Macino, G. & Rajewsky, N. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc. Natl. Acad. Sci. USA 103, 2746–2751 (2006).

    Article  CAS  Google Scholar 

  41. Giraldez, A.J. et al. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312, 75–79 (2006).

    Article  CAS  Google Scholar 

  42. Barkai, N. & Leibler, S. Robustness in simple biochemical networks. Nature 387, 913–917 (1997).

    Article  CAS  Google Scholar 

  43. Lenski, R.E., Ofria, C., Collier, T.C. & Adami, C. Genome complexity, robustness and genetic interactions in digital organisms. Nature 400, 661–664 (1999).

    Article  CAS  Google Scholar 

  44. Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    Article  CAS  Google Scholar 

  45. Yekta, S., Shih, I.H. & Bartel, D.P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004).

    Article  CAS  Google Scholar 

  46. Raser, J.M. & O'Shea, E.K. Noise in gene expression: origins, consequences, and control. Science 309, 2010–2013 (2005).

    Article  CAS  Google Scholar 

  47. Arias, A.M. & Hayward, P. Filtering transcriptional noise during development: concepts and mechanisms. Nat. Rev. Genet. 7, 34–44 (2006).

    Article  CAS  Google Scholar 

  48. Thattai, M. & van Oudenaarden, A. Intrinsic noise in gene regulatory networks. Proc. Natl. Acad. Sci. USA 98, 8614–8619 (2001).

    Article  CAS  Google Scholar 

  49. Paulsson, J. Summing up the noise in gene networks. Nature 427, 415–418 (2004).

    Article  CAS  Google Scholar 

  50. Swain, P.S., Elowitz, M.B. & Siggia, E.D. Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc. Natl. Acad. Sci. USA 99, 12795–12800 (2002).

    Article  CAS  Google Scholar 

  51. Blake, W.J., Kaern, M., Cantor, C.R. & Collins, J.J. Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    Article  CAS  Google Scholar 

  52. Ozbudak, E.M., Thattai, M., Kurtser, I., Grossman, A.D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73 (2002).

    Article  CAS  Google Scholar 

  53. Waddington, C.H. Genetic assimilation of the Bithorax phenotype. Evolution Int. J. Org. Evolution 10, 1–13 (1956).

    Article  Google Scholar 

  54. Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl. Acad. Sci. USA 95, 8420–8427 (1998).

    Article  CAS  Google Scholar 

  55. Masel, J. Cryptic genetic variation is enriched for potential adaptations. Genetics 172, 1985–1991 (2006).

    Article  CAS  Google Scholar 

  56. Sokol, N.S. & Ambros, V. Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev. 19, 2343–2354 (2005).

    Article  CAS  Google Scholar 

  57. Brennecke, J., Stark, A. & Cohen, S.M. Not miR-ly muscular: microRNAs and muscle development. Genes Dev. 19, 2261–2264 (2005).

    Article  CAS  Google Scholar 

  58. Meir, E., von Dassow, G., Munro, E. & Odell, G.M. Robustness, flexibility, and the role of lateral inhibition in the neurogenic network. Curr. Biol. 12, 778–786 (2002).

    Article  CAS  Google Scholar 

  59. Lai, E.C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363–364 (2002).

    Article  CAS  Google Scholar 

  60. Lai, E.C., Tam, B. & Rubin, G.M. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev. 19, 1067–1080 (2005).

    Article  CAS  Google Scholar 

  61. Stark, A., Brennecke, J., Russell, R.B. & Cohen, S.M. Identification of Drosophila MicroRNA targets. PLoS Biol. 1, E60 (2003).

    Article  Google Scholar 

  62. Lewis, E.B. A gene complex controlling segmentation in Drosophila. Nature 276, 565–570 (1978).

    Article  CAS  Google Scholar 

  63. Gibson, G. & Hogness, D.S. Effect of polymorphism in the Drosophila regulatory gene Ultrabithorax on homeotic stability. Science 271, 200–203 (1996).

    Article  CAS  Google Scholar 

  64. Keller, E.F. Developmental robustness. Ann. NY Acad. Sci. 981, 189–201 (2002).

    Article  Google Scholar 

  65. Nijhout, H.F. The nature of robustness in development. Bioessays 24, 553–563 (2002).

    Article  CAS  Google Scholar 

  66. Wagner, G.P. Evolutionary genetics: the nature of hidden genetic variation unveiled. Curr. Biol. 13, R958–R960 (2003).

    Article  CAS  Google Scholar 

  67. Rendel, J.M., Sheldon, B.L. & Finlay, D.E. Canalisation of development of scutellar bristles in Drosophila by control of the scute locus. Genetics 52, 1137–1151 (1965).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gibson, G. & Dworkin, I. Uncovering cryptic genetic variation. Nat. Rev. Genet. 5, 681–690 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank N. Barkai, U. Alon, G. Shinar, D. Bartel and S. Cohen for discussions. We thank E. McGlinn, R. Kafri and C. Burge for critical reading of the manuscript. E.H. acknowledges C. Tabin for inspiration, training and insightful remarks on this manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hornstein, E., Shomron, N. Canalization of development by microRNAs. Nat Genet 38 (Suppl 6), S20–S24 (2006). https://doi.org/10.1038/ng1803

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1803

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing