Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

A twin-pronged attack on complex traits

Abstract

Before one starts the hunt for quantitative trait loci (QTLs) for a complex trait it is necessary to show that the trait is genetically influenced. This evidence is most likely to come from the classical twin study—the demonstration that monozygotic twins are more similar for the trait than dizygotic twins. The strengths and weaknesses of twin studies are discussed, and it is suggested that, far from becoming irrelevant with advances in molecular biology, they can improve the efficiency of QTL detection and play an important role in unravelling developmental genetic mechanisms

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Heston, L.L. Psychiatric disorders in foster-home reared children of schizophrenic mothers, fir. J. Psychiatry 112, 819–825 (1966).

    Article  CAS  Google Scholar 

  2. Goodwin, D.W. et al. Drinking problems in adopted and nonadopted sons of alcoholic. Arch. Gen. Psychiatry 31, 164–169 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. Bulmer, M.G., Biology of Twinning in Man (Oxford University Press, Oxford, UK, 1970).

    Google Scholar 

  4. Kendler, K.S. et al. A test of the equal-environment assumption in twin studies of psychiatric illness. Behav. Genet. 23, 21–27 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Hopper, J.L. Genes for osteoarthritis: interpreting twin data. BMJ 312, 943–944 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Folstein, S. & Rutter, M. Genetic influences and infantile autism. Nature 265, 726–728 (1977).

    Article  CAS  PubMed  Google Scholar 

  7. Stevenson, J. Evidence for a genetic etiology in hyperactivity in children. Behav. Genet 22, 337–344 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Ebers, G.C. et al. A population-based study of multiple sclerosis in twins. N. Engl. J. Med. 315, 1638–1642 (1986).

    Article  CAS  PubMed  Google Scholar 

  9. Ebers, G.C. et al. A full genome search in multiple sclerosis. Nature Genet. 13, 472–476 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Bailey, J.M. & Pillard, R.C. A genetic study of male sexual orientation. Arch. Gen. Psychiatry 48, 1089–1096 (1991).

    Article  CAS  PubMed  Google Scholar 

  11. Bailey, J.M., Pillard, R.C., Neale, M.C. & Agyei, Y. Heritable factors influence sexual orientation in women. Arch. Gen. Psychiatry 5O, 217–223 (1993).

    Article  Google Scholar 

  12. Bailey, J.M., Dunne, M.P. & Martin, N.G. Sex differencesJn the distribution and determinants of sexual orientation in a national twin sample (submitted).

  13. Plomin, R., Corley, R., DeFries, J.C. & Fulker, D.W. Individual differences in television viewing in early childhood: nature as well as nurture. Psychol. Sci. 6, 371–377 (1990).

    Article  Google Scholar 

  14. Martin, N.G. et al. Transmission of social attitudes. Proc. Natl. Acad. Sci. USA. 83, 4364–4368 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. McGue, M. & Lykken, D.T. Genetic influence on risk of divorce. Psychol. Sci. 3, 368–373 (1991).

    Article  Google Scholar 

  16. Lykken, D.T. & Tellegen, A. Happiness is a stochastic phenomenon. Psychol. Sci. 7, 186–189 (1996).

    Article  Google Scholar 

  17. Rende, R.D., Plomin, R. & Vandenberg, S.G. Who discovered the twin method? Behav. Genet. 20, 277–285 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Cardon, L.R. et al. Quantitative trait locus for reading disability: correction. Science. 268, 1553 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Jinks, J.L. & Fulker, D.W. Comparison of the biometrical genetical, MAVA and classicalal approaches to the analysis of human behavior. Psychol. Bull. 73, 311–349 (1970).

    Article  CAS  PubMed  Google Scholar 

  20. Eaves, L.J., Last, K., Martin, N.G. & Jinks, J.L. A progressive approach to non-additivity and genotype-environmental covariance in the analysis of human differences, fir. J. Math. Statist. Psychol. 30, 1–42 (1977).

    Article  Google Scholar 

  21. Eaves, L.J., Last, K., Young, P.A. & Martin, N.G. Model-fitting approaches to the analysis of human behaviour. Heredity. 41, 249–320 (1978).

    Article  CAS  PubMed  Google Scholar 

  22. Martin, N.G., Eaves, L.J., Kearsey, M.J. & Davies, P. The power of the classical twin study. Heredity. 40, 97–116 (1978).

    Article  CAS  PubMed  Google Scholar 

  23. Neale, M.C., LJ.& Kendler, K.S. The power of the classical twin study to resolve variation in threshold traits. Behav. Genet. 24, 239–258 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Heath, A.C. et al. Genetic and environmental contributions to DSM-IIIR alcohol dependence risk in a national twin sample: no gender differences. Psychol. Med. (in the press).

  25. Holm, N.V., Hauge, M. & Harvald, B. Etiologic factors of breast cancer elucidated by a study of unselected twins. J. Natl. Cancer Inst. 65, 285–298 (1980).

    CAS  PubMed  Google Scholar 

  26. Kaprio, J. Lessons from twin studies in Finland. Ann. Med. 26, 135–139 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Eaves, L.J. & Meyer, J.M. Locating human quantitative trait loci: guidelines for the selection of sibling pairs for genotyping. behav. Genet. 24, 443–455 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Risch, N. & Zhang, H. Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science. 268, 1584–1589 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Eaves, L.J., Eysenck, H.J. & Martin, N.G. Genes, Culture and Personality: An Empirical Approach (Academic Press, London, 1989).

  30. Neale, M.C. & Cardon, L.R. Methodology for Genetic Studies of Twins and Families (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1992).

    Book  Google Scholar 

  31. Kendler, K.S. & Eaves, L.J. Models for the joint effect of genotype and environment on liability to psychiatric illness. Am. J. Psychiatry. 143, 279–289 (1986).

    Article  CAS  PubMed  Google Scholar 

  32. Carey, G. Sibling imitation and contrast effects, fiehav. Genet. 16, 319–342 (1986).

    CAS  Google Scholar 

  33. Martin, N.G. & Eaves, L.J. The genetical analysis of covariance structure. Heredity. 38, 79–95 (1977).

    Article  CAS  PubMed  Google Scholar 

  34. Boomsma, D.I., Martin, N.G., Neale, M.C., eds. Genetic analysis of twin and family data: structural modeling using LISREL. fiehav. Genet. 19, 3–161 (1989).

    Google Scholar 

  35. Neale, M.C. Mx: Statistical Modeling, 3rd ed. (Box 980126 MCV, Richmond VA 23298, 1997).

    Google Scholar 

  36. Risch, N. Linkage strategies for genetically complex traits: II. The power of affected relative pairs. Am. J. Hum. Genet. 46, 229–241 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hudziak, J.J. Identifying phenotypes for molecular genetic studies of childhood psychopathology. in The Handbook of Psychiatric Genetics (eds Blum, K. & Noble, E.) 201–218 (CRC Press, Boca Raton, Florida, 1997).

    Google Scholar 

  38. Boomsma, D.I. Using multivariate genetic modeling to detect pleiotropic quantitative trait loci, fiehav. Genet. 26, 161–166 (1996).

    CAS  Google Scholar 

  39. Kendler, K.S. Major depression and generalized anxiety disorder: same genes (partly) different environments-revisited. Br. J. Psychiatry 168 (Suppl. 30), 68–75 (1996).

    Article  Google Scholar 

  40. Eaves, L.J., Neale, M.C. & Macs, H. Multivariate multipoint linkage analysis of quantitative trait loci. Behav. Genet. 26, 519–525 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Paterson, A.H. et al. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature. 335, 721–726 (1988).

    Article  CAS  PubMed  Google Scholar 

  42. Flint, J. et al. A simple genetic basis for a complex psychological trait in laboratory mice. Science. 269, 1432–1435 (1995).

    Article  CAS  PubMed  Google Scholar 

  43. Fulker, D.W. & Cherny, S.S. An improved multipoint sib-pair analysis of quantitative traits, flehav. Genet. 26, 527–532 (1996).

    CAS  Google Scholar 

  44. Kruglyak, L. & Lander, E.S. High-resolution genetic mapping of complex traits. Am. J. Hum. Genet. 56, 1212–1223 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Collins, F.S. Positional cloning moves from perditional to traditional. Nature Genet. 9, 347–350 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science. 273, 1516–1517 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Bouchard, T.J. et al. Sources of human psychological differences: the Minnesota study of twins reared apart. Science. 268, 223–228 (1990).

    Article  Google Scholar 

  48. Truett, K.R. et al. A model system for analysis of family resemblance in extended kinships of twins. Behav. Genet. 24, 35–49 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Maes, H.H.M., Neale, M.C. & Eaves, L.J. (1997). Genetic and environmental factors in relative body weight and human adiposity. Behav. Genet., (in the press).

  50. Hennis, B.C. et al. An amino acid polymorphism in histidine-rich glycoprotein (HRG) explains 59% of the variance in plasma HRG levels. Thromb. Haemostasis. 74, 1497–1500 (1995).

    Article  CAS  Google Scholar 

  51. Martin, N.G. et al. Does the PI polymorphism alone control alpha-1-antitrypsin expression. Am. J. Hum Genet. 40, 267–277 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Phillips, D.I.W. Twin studies in medical research: can they tell us whether diseases are genetically determined?. Lancet. 341, 1008–1009 (1993).

    Article  CAS  PubMed  Google Scholar 

  53. Christensen, K., Vaupel, J.W., Holm, N.V. & Yashin, A.I. Mortality among twins after age 6: fetal origins hypothesis versus twin method. BMJ. 310, 432–436 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. van den Oord, E.J. et al. A twin-singleton comparison of problem behavior in 2–3 year olds. J. Child Psychol. Psychiatry. 36, 449–458 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Darlington, C.D. Twin biology. Heredity. 25, 655–657 (1970).

    Article  CAS  PubMed  Google Scholar 

  56. Loehlin, J.C. & Nichols, R.C., Personality: A Study of 850 Sets of Twins (University of Texas Press, Austin, Texas, 1976).

    Google Scholar 

  57. Plomin, R. & Daniels, D. Why are children in the same family so different from one another?. Behav. Brain Sci. 10, 1–60 (1987).

    Article  Google Scholar 

  58. Rowe, D.C., Limits of Family Influence: Genes, Experience, and Behavior (Guilford Press, New York, 1994).

    Google Scholar 

  59. Torrey, E.F. et al. Prenatal origin of schizophrenia in a subgroup of discordant monozygotic twins. Schizophr. Bull. 20, 425–432 (1994).

    Google Scholar 

  60. Hopper, J.L. & Seeman, E. The bone density of female twins discordant for tobacco use. N. Engl. J. Med. 330, 387–392 (1994).

    Article  CAS  PubMed  Google Scholar 

  61. Vernon, P.A., Jang, K.L., Harris, J.A. & McCarthy, J.M. Environmental predictors of personality differences: a twin and sibling study. J. Person. Soc. Psychol. 72, 177–183 (1997).

    Article  CAS  Google Scholar 

  62. Côté, G.B. & Gyftidimou, J. Twinning and mitotic crossing-over: some possibilities and their implications. Am. J. Hum. Genet. 49, 120–130 (1991).

    PubMed  PubMed Central  Google Scholar 

  63. Machin, G.A. Some causes of genotypic and phenotypic discordance in monozygotic twin pairs. Am. J. Med, Genet. 61, 216–228 (1996).

    Article  CAS  Google Scholar 

  64. Molenaar, P.C.M., Boomsma, D.I. & Dolan, C.V. A third source of developmental differences, fiehav. Genet. 23, 519–524 (1993).

    CAS  Google Scholar 

  65. Richards, C.S. et al. Skewed X inactivation in a female MZ twin results in Duchenne muscular dystrophy. Am. J. Hum. Genet. 46, 672–681 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Trejo, V. et al. X chromosome inactivation patterns correlate with fetal-placental anatomy in monozygotic twin pairs: implications for immune relatedness and concordance for autoimmunity. Mol. Med. 1, 62–70 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, N., Boomsma, D. & Machin, G. A twin-pronged attack on complex traits. Nat Genet 17, 387–392 (1997). https://doi.org/10.1038/ng1297-387

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1297-387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing