Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome

Abstract

Rieger syndrome (REG) is an autosomal–dominant human disorder that includes anomalies of the anterior chamber of the eye, dental hypoplasia and a protuberant umbilicus. We report the human cDNA and genomic characterization of a new homeobox gene, RIEG, causing this disorder. Six mutations in RIEG were found in individuals with the disorder. The cDNA sequence of Rieg, the murine homologue of RIEG, has also been isolated and shows strong homology with the human sequence. In mouse embryos Rieg mRNA localized in the periocular mesenchyme, maxillary and mandibular epithelia, and umbilicus, all consistent with RIEG abnormalities. The gene is also expressed in Rathke's pouch, vitelline vessels and the limb mesenchyme. RIEG characterization provides opportunities for understanding ocular, dental and umbilical development and the pleiotropic interactions of pituitary and limb morphogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Murray, J.C. Face facts: genes, environment, and clefts. Am. J. Hum. Genet. 57, 227–232 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Winter, R. What's in a face? Nature Genet. 12, 124–129 (1996).

    Google Scholar 

  3. Collins, F.S. Positional cloning moves from perditional to traditional. Nature Genet. 9, 347–350 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Krumlauf, R. Hox genes in vertebrate development. Cell 78, 191–201 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Sanyanusin, P. et al. Mutation of the PAX2 gene in a family with optic nerve colobomas, renal anomalies, and vesicoureteral reflux. Nature Genet. 9, 358–363 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Baldwin, C.T., Hoth, C.F., Amos, J.A., da-Silva, E.O. & Milunsky, A. An exonic mutation in the HuP2 paired domain gene causes Waardenburg's syndrome. Nature 355, 637–638 (1992).

    Article  CAS  PubMed  Google Scholar 

  7. Glaser, T., Walton, D.S. & Maas, R.L. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nature Genet. 2, 232–238 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Jabs, E.W. et al. A mutation in the homeodomain of the human MSX2 gene in a family affected with autosomal dominant craniosynostosis. Cell 75, 443–450 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Vastardis, H., Karimbux, N., Guthua, S.W., Seidman, J.G. & Seidman, C.E. A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nature Genet. 13, 417–421 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Muragaki, Y., Mundlos S., Upton J. & Olsen B.J. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science 272, 548–551 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Brunelli, S. et al. Germline mutations in the homeobox gene EMX2 in patients with severe schizencephaly. Nature Genet. 12, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Pfäffte, R.W. et al. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science 257, 1118–1121 (1992).

    Article  Google Scholar 

  13. Vossius, A. Kongenitaleanomalien der iris. Kiln. Mbl. Augenheilk 21, 233–237 (1883).

    Google Scholar 

  14. Darwin, C. Animals and plants under domestication 1, chapter 12, 434–461 (D. Appteton & Co, New York, 1893).

    Google Scholar 

  15. Rieger, H. Dysgenesis mesodermaiis coreneal et iridis. Z. Augenheik 86, 333 (1935).

    Google Scholar 

  16. Murray, J.C. et al. Linkage of Rieger syndrome to the region of the epidermal growth factor on chromosome 4. Nature Genet. 2, 46–49 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Phillips, J.C. et al. A second locus for Rieger syndrome maps to chromosome 13q14. Am. J. Hum. Genet. 59, 613–619 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Slavkin, H.C. Rieger syndrome revisited: experimental approaches using phamiacologic and antisense strategies to abrogate EGF and TGF-a functions resulting in dysmorphogenesis during embryonic mouse crantofacial morphogenesis. Am. J. Med. Genet. 47, 689–697 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Datson, N. et al. Closing in on the Rieger syndrome gene on 4q25: mapping translocation breakpoints wrthin a 50-kb region. Am. J. Hum. Genet, (in the press).

  20. Semina, E. et al. Exclusion of epidermal growth factor (EGF) and high-resolution physical mapping across the Rieger syndrome locus. Am. J. Hum. Genet, (in the press).

  21. Padanilam, B.J. et al. Characterization of the human HOX7 cDNA and identification of polymorphic markers. Hum. Mol. Genet. 1, 407–410 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Kozak, M. Interpreting cDNA sequences: some insights from studies on translation. Mamm. Genome 7, 563–574 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Lamonerie, T. et al. Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev. 10, 1284–1295 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Szeto, D.P., Ryan, A.K., O'Connell, S.M. & Rosenfeld, M.G. P-OTX: A PIT-1-interacting homeodomain factor expressed during anterior pituitary gland development. Proc. Natl. Acad. Sci. USA 93, 7706–7710 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hanes, S.D. & Brent, R. DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9. Cell 57, 1275–1283 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Jin, Y., Hoskins, R. & Horvitz, H.R. Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature 372, 780–783 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Simeone, A. et al. A vertebrate gene related to ortnodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J. 12, 2735–2747 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hanes, S.D., Riddihough, G., Ish-Horowicz, D. & Brent, R. Specific DNA recognition and intersite spacing are critical for action of the bicoid morphogen. Mol. Cell Biol. 14, 3364–3375 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nohno, T. et al. A chicken homeobox gene related to Drosophila paired is predominantly expressed in the developing limb. Dev. Biol. 158, 254–264 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Leussink, B. et al. Expression patterns of the paired-related homeobox genes Mhox/Prx1 and S8/Prx2 suggest roles in development of the heart and forebrain. Mech. Dev. 52, 51–64 (1995).

    Article  CAS  PubMed  Google Scholar 

  31. Zhao, G.Q., Eberspaecher, H., Seldin, M.F. & de Crombrugghe, B. The gene for the homeodomain-containing protein Cart-7 is expressed in cells that have a chondrogenic potential during embryonic development. Mech. Dev. 48, 245–254 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Schneta, K., Spielmann, p., & Noll, M. Molecular genetics of aristaless, a prd-type homeo box gene involved in the morphogenesis of proximal and distal pattern elements in a subset of appendages in Drosophila . Genes Dev. 7, 114–129 (1993).

    Article  Google Scholar 

  33. Saito, T., Greenwood, A., Sun, Q. & Anderson, D.J. Identification by differential RT-PCR of a novel paired homeodomain protein specifically expressed in sensory neurons and a subset of their CNS targets. Mol. Cell. Neurosci. 6, 280–292 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, I.S. et al. Developmental expression of a novel murine homeobox gene (Chx10): evidence for roles in determination of the neuroretina and inner nuclear layer. Neuron 13, 377–393 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Simeone, A. et al. Ortnopedia, a novel homeobox-containing gene expressed in the developing CNS of both mouse and Drosophila. Neuron 13, 81–101 (1994).

    Article  Google Scholar 

  36. Shapiro, M.B. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucl. Adds Res. 15, 7155–7174 (1987).

    Article  CAS  Google Scholar 

  37. Reed, R. The organization of 3′ splice-site sequences in mammalian introns. Genes Dev. 3, 2113–2123 (1989).

    Article  CAS  PubMed  Google Scholar 

  38. Bedell, M.A., Jenkins, N.A. & Copeland, N.G. Good genes in bad neighbourhoods. Nature Genet. 12, 229–232 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Berieth, T. et al. The role of localization of bicoid RNA in organizing the anterior pattern of the Drosophila embryo. EMBO J. 7, 1749–56 (1988).

    Article  Google Scholar 

  40. Simmons, D.M. et al. Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev. 4, 695–711 (1990).

    Article  CAS  PubMed  Google Scholar 

  41. Feingold, M., Shiere, F., Fogels, H.R. & Donaldson, D. Rieger's syndrome. Pediatr. 44, 564–569 (1969).

    CAS  Google Scholar 

  42. Sadeghi-Nejad, A. & Senior, B. Autosomal dominant transmission of isolated growth hormone deficiency in iris-dental dysplasia (Rieger's syndrome). J. Pediatr. 85, 644–648 (1974).

    Article  CAS  PubMed  Google Scholar 

  43. Treisman, J., Harris, E., Wilson, D. & Desplan, C. The homeodomain: a new face for the helix-turn-helix?. BioEssays 14, 145–150 (1992).

    Article  CAS  PubMed  Google Scholar 

  44. Asson-Batres, M.A., Spurgeon, S.L., Diaz, J. deLoughery, T.G. & Bagby, G.C. Evolutionary conservation of the AU-rich 3′ untranslated region of messenger RNA. Proc. Natl. Acad. Sci. USA 91, 1318–1322 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Beelman, C.A. & Parker, R. Degradation of mRNA in eukaryotes. Cell 81, 179–183 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Dubnau, J. & Struhl, G. RNA recognition and translational regulation by a homeodomain protein. Nature 379, 694–699 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Heon, E. et al. Linkage of autosomal dominant iris hypoplasia to the region of the Rieger syndrome locus (4q25). Hum. Mol. Genet. 4, 1435–1439 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Alkemade, P.P.H. Dysgenesis mesodermaiis of the iris and the cornea: a study of Rieger's syndrome and Peter's anomaly (Charles C. Thomas, Assen, Netherlands, 1969).

    Google Scholar 

  49. MacKenzie, A., Ferguson, M.W.J. & Sharpe, R.T. Expression patterns of the homeobox gene, Hox-8, in the mouse embryo suggest a role in specifying tooth initiation and shape. Development 115, 403–420 (1992).

    CAS  PubMed  Google Scholar 

  50. Krespi, Y.P. & Pertsemlidis, D. Rieger's syndrome associated with a large Meckel's diverticulum. Am. J. Gastroenter. 71, 608–610 (1979).

    CAS  PubMed  Google Scholar 

  51. Rogers, R.C. Rieger syndrome. Proc. Greenwood Genet. Center 7, 9–13 (1988).

    Google Scholar 

  52. Crawford, R.A.D. Iris dysgenesis with other anomalies. Brit. J. Ophthalmol. 51, 438–440 (1967).

    Article  CAS  Google Scholar 

  53. Fitch, N. & Kaback, M., Axenfeld syndrome and the Rieger syndrome. J. Med. Genet. 15, 30–34 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Eiberg, H., Bixler, B., Nielsen, L.S., Coneally, P.M. & Mohr, J. Suggestion of linkage of a major locus for nonsyndromic orofacial cleft with F13A and tentative assignment to chromosome 6. Clin. Genet. 32, 129–132 (1987).

    Article  CAS  PubMed  Google Scholar 

  55. Moore, G.E. et al. Linkage of an X-chromosome cleft palate gene. Nature 326, 91–92 (1987).

    Article  CAS  PubMed  Google Scholar 

  56. Murray, J.C. et al. Linkage of an autosomal dominant clefting syndrome (Van der Woude) to loci on chromosome 1q. Am. J. Hum. Genet. 46, 486–491 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Muenke, M. et al. Linkage of human brain malformation, familial holoprosencephaly, to chromosome 7 and evidence for genetic heterogeneity. Proc. Nat. Acad. Sci. USA 91, 8102–8106 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tassabehji, M. et al. Waardenburg's syndrome patients have mutations in the human homologue of the Pax-3 paired box gene. Nature 355, 635–636 (1992).

    Article  CAS  PubMed  Google Scholar 

  59. Dixon, J. et al. Positional cloning of a gene involved in the pathogenesis of Treacher Collins syndrome. Nature Genet. 12, 130–136 (1996).

    Article  Google Scholar 

  60. Slaney, S.F. et al. Differential effects of FGFR2 mutations on syndactyly and cleft palate in Apert syndrome. Am. J. Hum. Genet. 58, 923–932 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Pasteris, N.G. et al. Isolation and characterization of the faciogenital dysplasia (Aarskog-Scott syndrome) gene: a putative Rho/Rac guanine nucleotide exchange factor. Cell 79, 669–678 (1994).

    Article  CAS  PubMed  Google Scholar 

  62. Gasser, D.L., Goldner-Sauve, A., Katsuma, M. & Goldman, A.S. Restriction fragment length polymorphisms, glucocorticoid receptors, and phenytoin-induced cleft palate in congenic strains of mice with serious susceptibility differences. J. Craniofac. Genet. Dev. Bio. 11, 366–371 (1991).

    CAS  Google Scholar 

  63. Karoiyi, J. & Erickson, R.R. A region of the mouse genome homologous to human chromosome 1 q21 affects facial clefting. J. Craniofac. Genet. Dev. Bio. 13, 1–5 (1993).

    Google Scholar 

  64. Satokata, I. & Maas, R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nature Genet. 6, 348–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  65. Juriloff, D.M. & Mah, D.G. The major locus for multifactorial nonsyndromic cleft lip maps to mouse chromosome 11. Mamm. Genome 6, 63–69 (1995).

    Article  CAS  PubMed  Google Scholar 

  66. Kaartinen, V. et al. Abnormal lung development and cleft palate in mice lacking TGF- β3 indicates defects of epitnelial-mesenchymal interaction. Nature Genet. 11, 415–421 (1995).

    Article  CAS  PubMed  Google Scholar 

  67. Proetzel, G. et al. Transforming growth factor- β3 is required for secondary palate fusion. Nature Genet. 11, 409–414 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. Qiu, M. et al. Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second branchial arch derivatives and abnormal differentiation in the forebrain. Genes Dev. 9, 2523–2538 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Lindsay, S. & Bird, A.P. Use of restriction enzymes to detect potential gene sequences in mammalian DNA. Nature 327, 336–338 (1987).

    Article  CAS  PubMed  Google Scholar 

  70. Theiler, K., Atlas of Embryonic Development (Springer-Veriag, New York, 1989).

    Google Scholar 

  71. Sassoon, D. & Rosenthal, N. Detection of messenger RNA by in situ hybridization. Meth. Enzymol. 225, 384–404 (1993).

    Article  CAS  Google Scholar 

  72. Harland M. H. & Richard, M. H. In situ hybridization: an improved whole-mount method for Xenopus embryos. Meth. Cell Biol. 36, 685–695, Appendix G (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semina, E., Reiter, R., Leysens, N. et al. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 14, 392–399 (1996). https://doi.org/10.1038/ng1296-392

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1296-392

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing